на какие числа можно разложить 100

Найти НОД и НОК чисел 40000 и 100

Найти: НОД и НОК этих чисел.

Нахождение НОД 40000 и 100

Наибольший общий делитель (НОД) целых чисел 40000 и 100 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 40000 и 100:

1. Раскладываем 40000 и 100 на простые множители:

40000 = 2 · 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5 · 5;

400002
200002
100002
50002
25002
12502
6255
1255
255
55
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 5, 5

3. Перемножаем эти множители и получаем: 2 · 2 · 5 · 5 = 100

Нахождение НОК 40000 и 100

Наименьшее общее кратное (НОК) целых чисел 40000 и 100 — это наименьшее натуральное число, которое делится на 40000 и на 100 без остатка.

Как найти НОК 40000 и 100:

1. Раскладываем 40000 и 100 на простые множители:

40000 = 2 · 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5 · 5;

400002
200002
100002
50002
25002
12502
6255
1255
255
55
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Источник

Разложение числа на множители онлайн

Онлайн калькулятор раскладывает число в произведение простых множителей. Для вычислений используется длинная арифметика, поэтому можно легко разложить на множители даже большие числа.

Что такое разложение числа на множители?

Натуральное число на какие числа можно разложить 100называется делителем целого числа на какие числа можно разложить 100если для подходящего целого числа на какие числа можно разложить 100верно равенство на какие числа можно разложить 100. В этом случае говорят, что на какие числа можно разложить 100делится на на какие числа можно разложить 100или что число на какие числа можно разложить 100кратно числу на какие числа можно разложить 100.

Простым числом называют натуральное число на какие числа можно разложить 100, делящееся только на себя и на единицу. Составным числом называют число, имеющее больше двух различных делителей (любое натуральное число на какие числа можно разложить 100не равное на какие числа можно разложить 100имеет как минимум два делителя: на какие числа можно разложить 100и на какие числа можно разложить 100). Например, числа на какие числа можно разложить 100 на какие числа можно разложить 100 на какие числа можно разложить 100 на какие числа можно разложить 100 на какие числа можно разложить 100– простые, а числа на какие числа можно разложить 100 на какие числа можно разложить 100– составные.

Как разложить число на множители?

В школе на уроках математики разложение числа на множители обычно записывают столбиком в две колонки. Делается это так: в левую колонку выписываем исходное число, затем

Повторяем эти шаги, при этом работаем уже с последним числом в левой колонке и с текущим простым числом. Разложение заканчивается, когда в левой колонке будет записано число 1.

Чтобы лучше понять алгоритм, разберём несколько примеров.

Решение. Записываем число 84 в левую колонку:

Берём первое простое число — два и проверяем, делится ли 84 на 2. Так как 84 оканчивается на 4, а 4 делится на 2, то и 84 делится на 2 по признаку делимости. Записываем 2 в правую колонку. 84:2 = 42, число 42 записываем в левую колонку. Получили вот что:

Теперь работаем уже с числом 42. Число 42 делится на 2, поэтому записываем 2 в правую колонку, 42:2 = 21, число 21 записываем в левую колонку.

Число 21 на 2 не делится, поэтому проверяем его делимость на следующее простое число — 3. Число 21 делится на 3, 21:3 = 7. Записали 3 в правую колонку, 7 — в левую. Получили

Число 7 — простое число, поэтому в правой колонке записываем 7, в левую пишем 1. В итоге получили:

Всё, число разложено!

В результате в правой колонке оказались записаны все простые множители числа 84. То есть 84=2∙2∙3∙7.

О калькуляторе

Программа раскладывает числа на множители методом перебора делителей. Для вычислений используется длинная арифметика, поэтому раскладывать можно даже большие числа. Однако если число простое или имеет большие простые делители, разложение его на множители занимает продолжительное время.

Источник

Математика

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Все вещи можно представить в виде чисел.

Рассмотрим привычный всем карандаш. Привычный, обыденный предмет. Большинство людей даже не задумываются, из чего он состоит.

На самом деле, для изготовления карандаша понадобится древесина, грифель, краска. И это самый простейший перечень составляющих. Ведь собственные составляющие имеют краска, грифель, древесина. Поэтому список компонентов, необходимых для изготовления обычного карандаша, можно продолжать очень долго. Точно так происходит и с математическими числами. Каждое число имеет свой состав, в зависимости от состава – название.

А из чего состоят числа? Какие бывают? Как разложить число? На эти и многие другие вопросы ищите ответы в нашем уроке!

Простые и составные числа

На столе лежало 2 яблока, 4 апельсина. Сколько детей, смогут полакомиться, каждым видом фруктов?

Чтобы ответить на главный вопрос задачи нужно выяснить на какое количество человек можно разделить фрукты, не деля их на части (целыми).

В математике такие числа называют простыми

Получается, четыре мы можем разделить на 1, на само себя и еще на два. Такой вид чисел в арифметике называют составными:

Разложение на простые множители

В математике возникают ситуации, когда для выполнения определенных вычислений нужно знать, какие множители входят в состав того, или иного числа.

Например в состав 6, входит два простых множителя:

А как быть с большими числами, в записи, которых 2 и более знака? Как правильно выполнять и записывать разложение на простые множители?

Что значит «Разложить на простые множители?».

В арифметике для выполнения разложения на простые множители, существует специальный вид записи и алгоритм действий.

Давайте рассмотрим алгоритм действий:

Запись разложения числа на простые множители выполняется столбиком, состоящим из двух колонок. В правой колонке записываем делимое и полученное частное, в левой – пишем подходящие, простые делители. Между собой колонки разделены вертикальной чертой:

Разложим на множители число 20.

Для выполнения данного задания, используем рассмотренный алгоритм.

20 можно разделить на: 1, 2, 4, 5, 10,20.

Мы подобрали шесть делителей, значит, делимое, является составным числом.

Для этого вспоминаем изученные признаки делимости, и проверяем данное число.

Начнем с наименьшего простого числа 2

Делимое 20 оканчивается цифрой 0, значит, оно делится без остатка на 2.

Далее, подбираем делитель к полученному частному. Опять начинаем с наименьшего простого числа 2. Так как запись 10, оканчивается 0, по признаку делимости, число делится на 2 без остатка:

В результате мы получили простое число, которое можно разделить, только на само себя (на 1 деление не выполняем, оно не является простым числом).

Когда в частном получилась единица, то говорят, разложение числа на простые множители окончено.

Давайте запишем данную математическую операцию.

Выполнять запись будем в столбик.

Сначала записываем делимое и проводим вертикальную черту.

Рядом, с правой стороны, пишем первый делитель.

Выполняем деление и записываем частное под делимым.

После, снова подбираем делитель к полученному частному, справа пишем подходящий делитель. Выполняем деление до тех пор, пока в результате не увидим 1.

Выходит, 20 = 2×2×5. Полученное выражение можно записать немного иначе. В записи использовано два одинаковых множителя, повторяющихся два раза. Используя определение степени

Ничего сложного. Главное – запомнить порядок действий!

Рассмотрим еще один пример.

Разложим число 156.

Чтобы выполнить данное задание используем правило разложения числа на простые множители.

Выполняем деление и частное запишем под делимым: 156 : 2 = 78.

Полученное частное (78) оканчивается четной цифрой, следовательно,делится на 2. Рядом записываем делитель, выполняем деление:

Новый результат оканчивается нечетной цифрой, поэтому на два разделить нельзя. Смотрим, подойдет ли в качестве делителя следующее – 3. Вспоминаем признак делимости на 3:

В записи 39 использованы цифры 3,9. Найдем их сумму:

Полученная сумма делится на 3, следовательно, все число делится на 3.

Записываем делитель и выполняем деление 39 : 3 = 13. Частное, пишем в левый столбик:

Частное 13 – простое, делится на 1 и на само себя. Поэтому:

Разложение на простые множители выполнено.

Очень важно запомнить рассмотренные определения и алгоритм, так как умение раскладывать число на простые множители пригодится вам в течение всего учебного процесса!

Минутка истории

Интерес ученых к простым числам проснулся в третьем веке до нашей эры. Первым заинтересовался Евклид, нашел доказательство, что ряд простых чисел бесконечен. К сожалению,перечень известных, пополнялся новыми, очень медленно, пока не появились первые вычислительные машины, самостоятельно подбирающие делители к огромным числовым значениям. В 1952 г. самое большое простое числовое значение, известное науке содержало 157 цифр, уже в 1985 году количество цифр стало 65050. Сегодня, математики продолжают работать над этим вопросом. Результатом проделанной работы стало открытие американскими учеными нового, самого большого простого числового значения, состоящего из 65087 цифр. Научные сотрудники более 12 месяцев проверяли, подходящие под требования числовые значения. Проверено более 350000 чисел, подобрано несколько миллиардов различных делителей.

В декабре 2018, американский разработчик Патрик Ларош, побил мировые рекорды и открыл наибольшее простое число 2 82 589 933 – 1. Количество цифр этого числа равно 24 862 048. За свое открытие Патрик получил премию в размере 2 миллионов долларов.

Источник

Разложить число на простые множители онлайн

Данный калькулятор поможет разложить число на простые множители. Напомним, что основная теорема арифметики гласит, что любое целое число большее единицы можно разложить на простые множители. Т. е. представить как произведение множителей, в качестве которых выступают простые числа.

Простое число — число, которые имеют только два делителя — единицу и само себя.

Например, число 5 простое, так как делится без остатка только на 1 и на 5. А число 33 не простое, так как делится на 1, на 3 и на 11.

Разложение числа на простые множители

Калькулятор позволяет разложить число на простые множители. При этом вы получаете два варианта ответа — в виде произведения простых множителей и в виде столбика.

Пример разложения числа на простые множители

на какие числа можно разложить 100

на какие числа можно разложить 100

на какие числа можно разложить 100

на какие числа можно разложить 100

В итоге получаем: 84 = 2 • 2 • 3 • 7. Мы разложили число на простые множители.

Источник

Простые и составные числа: определения и примеры

на какие числа можно разложить 100

Простые и составные числа: Freepick

Математика по-разному называет числа и делит их на определенные группы. На уроках услышите о простых и составных числах. Чем обосновано такое деление и как научиться различать эти категории чисел? Помогут разобраться в этом вопросе примеры.

Простые числа и их особенности

Сложение, вычитание, умножение, деление — все эти операции привычны для математиков, которые ловко оперируют самыми разными числами и способны вести подсчеты в уме не хуже, чем вычислительные машины. Помогают им в этом простые и составные числа.

Познакомимся с первой группой чисел. Простое число — это любое число, которое можно разделить само на себя и на единицу. Яркий и простой для запоминания пример — число 13. Легко заключить, что разделить его получится:

Любое число, которому подходит под это определение, попадает в группу простых. Следует помнить о том, что подразумевается деление числа нацело. С целым или дробным остатком деление возможно практически для любых чисел.

на какие числа можно разложить 100

Числа в математике: Freepick

Для удобства в математике используются таблицы простых чисел. При их составлении вручную последовательно проверяется каждое число. Например:

Такие операции можно выполнять до числа 100 и далее.

Но в книге о простых числах выдающегося математика Л. Г. Шнирельмана указано, что существует бесконечное множество простых чисел. Как быть и можно ли ускорить процесс их нахождения?

Математики нашли решение этой задачи. Быстро отобрать простые числа можно с помощью решета Эратосфена:

На уроках часто пользуются уже готовыми таблицами, но важно помнить о том, каким образом в них оказываются те или иные числа. Кроме простых, выделяют также группу взаимно простых чисел, у которых есть только один общий делитель — единица (например, 14 и 25).

Что такое составные числа

Количество составных чисел в разы превышает количество простых. Составными числами называют такие, которые не относятся к простым, то есть имеют делители, кроме единицы и самого себя. Иногда составные числа называют сложными.

Рассмотрим это на примере:

Таким образом, составным числом называют такое число, у которого есть два и более простых множителей.

Зачем математики используют простые и составные числа? Это необходимо для упрощения разложения на множители. Вместо долгих поисков того, на какие числа можно разложить большое значение, достаточно использовать специальную таблицу.

Разложение на простые множители необходимо для определения самого большого общего делителя и самого маленького общего кратного. Эти значения применяют в сложении, вычитании и сравнении дробей.

на какие числа можно разложить 100

Математические расчеты: Freepick

Обсуждая простые и составные числа, не было сказано, в какую группу отнести ноль и единицу. Остановимся на единице. Согласно определению, у простого числа должно быть два делителя — единица и оно само.

Но для единицы делитель фактически один, потому к простым числам ее нельзя отнести. Составным числом единица также не может быть (нет более двух делителей), а потому она остается числом без категории.

Как быть с нулем? Ноль, в отличие от единицы, делится на любые числа и получается при этом все тот же ноль. Кроме того, его не получится разложить на простые множители. С учетом теории и определения простых и составных чисел математики приняли решение ноль, как и единицу, исключить из категорий простых и составных чисел.

Таким образом, математикам удалось классифицировать и разделить на две большие группы все многообразие чисел. Ученые сделали это, найдя для них общие признаки. Простые числа имеют только два делителя, а у составных их гораздо больше. Вне этой классификации остались лишь единица и ноль.

на какие числа можно разложить 100

Уникальная подборка новостей от нашего шеф-редактора

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *