какого элемента нет в конусе
Что такое конус: определение, элементы, виды
В данной публикации мы рассмотрим определение, основные элементы и виды одной из самых распространенных фигур в пространстве – конуса. Представленная информация сопровождается соответствующими рисунками для лучшего восприятия.
Определение конуса
Далее мы будем рассматривать самый распространенный вид конуса – прямой круговой. Остальные возможные варианты фигуры перечислены в последнем разделе публикации.
Итак, прямой круговой конус – это трехмерная геометрическая фигура, полученная путем вращения прямоугольного треугольника вокруг одного из своих катетов, который в данном случае будет являться осью фигуры. Ввиду этого иногда такой конус называют конусом вращения.
Конус на рисунке выше получен в результате вращения прямоугольного треугольника ACD (или BCD) вокруг катета CD.
Основные элементы конуса
Между образующей конуса, его высотой и радиусом основания есть взаимосвязь (согласно теореме Пифагора):
Развёртка конуса – боковая поверхность конуса, развернутая в плоскость; является круговым сектором.
Примечание: Основные свойства конуса мы рассмотрели в отдельной публикации.
Из огромного перечня математических заданий часто встречаются задачи, связанные с темой «Конус». На уроках геометрии школьники должны усвоить основные понятия и названия всех элементов этой фигуры и понять, как и по каким формулам производится расчет нужных параметров.
О данной геометрической фигуре пойдёт речь в сегодняшней статье.
Определение и элементы конуса
Под конусом понимают тело, состоящее из круга и точки, которая удалена от его поверхности на определённое расстояние.
При этом точка соединяется с основанием посредством проведения лучей, которые называются образующими. Линия, соединяющая центр круга с удалённой точкой, является высотой данной фигуры.
Обратите внимание! Также существует такое понятие, как ось конуса. Это линия, проходящая через его центр и совпадающая с высотой. Образующие строятся относительно оси.
Хотелось бы рассмотреть ещё несколько понятий по этой теме:
1. Под конусностью понимают отношение диаметра основания фигуры и её высоты:
Важно! Конусность отвечает за угол наклона образующих. Чем больше данный параметр, тем острее угол.
2. Осевое сечение предполагает наличие плоскости, которая будет рассекать фигуру, проходя через ось:
3. Касательная— это плоскость, которая соприкасается с образующей конуса. При этом важно, чтобы она была перпендикулярна осевому сечению.
Свойства кругового конуса
Выделяют несколько особенностей, которыми обладает фигура данного типа:
Образующие кругового конуса равны друг другу.
Чтобы найти центр тяжести фигуры, нужно её высоту поделить на четыре части.
Место пересечения плоскости сечения и основы образует параболу. Если через вершину тела провести плоскость сечения, то получится равнобедренный треугольник.
Интересный факт! Если вращать прямоугольный треугольник вокруг одного из катетов, то получится конус. При этом важно, чтобы угол вращения был не менее 360 градусов.
Общая формула объёма фигуры
Чтобы найти объём кругового конуса, необходимо умножить число Пи на его высоту, на радиус в квадрате и всё это произведение поделить на три:
Дополнительная информация! Чтобы узнать объём фигуры, нужно умножить площадь её основы на высоту и поделить на три:
Объём усечённого конуса
Это часть прямого конуса, которая находится в пространстве между основой и плоскостью, параллельной этому основанию. В общем виде выглядит следующим образом:
Объём данного тела можно вычислить по формуле:
Важно! S и S 1 это площади соответствующих основ, которые равняются ПR 2 и ПR 1 2 При нахождении этих значений поможет онлайн калькулятор.
Площадь поверхности фигуры
Для вычисления данного параметра потребуется знать площадь боковой поверхности. Она равняется произведению числа π, радиуса и длины образующей.
Чтобы рассчитать площадь всей поверхности, нужно сложить площади его основы и боковой поверхности.
Площадь усечённого конуса
Для нахождения данного параметра нужно воспользоваться формулами:
площади боковой поверхности усечённого конуса Sбок;
полной площади усечённой фигуры Sпол, которая равна сумме площадей двух оснований и площади боковой поверхности:
Уравнение конуса
Часто требуется при решении математических задач. Записывается в следующем виде:
где x0, y0,z0— координаты по соответствующим осям.
Таким образом, в данной статье были представлены основные сведения, которые могут понадобиться при решении задач на тему «Конус».
Тест по теме «Тела вращения».
Тест по теме: «Тела вращения»
1. Какое тело вращения имеет 2 основания?
а) конус б) шар в) цилиндр
2. Какое тело вращения имеет в сечении треугольник?
а) конус б) шар в) цилиндр
3. Какое тело вращения не имеет образующей?
а) конус б) шар в) цилиндр.
4. Какая фигура является осевым сечением усеченного конуса?
а) круг б) треугольник в) трапеция.
5. Какая фигура является сечением шара?
а) прямоугольник б) круг в) ромб.
6. Какой элемент, не принадлежит цилиндру?
а) образующая б) апофема в) радиус
7. Найдите радиус конуса, если его образующая 13 дм, а высота 12 дм.
а) 25 дм б) 5 дм в) дм.
8. Найдите образующую усеченного конуса, если его радиусы 5 см и 10 см, а высота 4 см
а) см б) 19 см в) 9 см.
9. Найти высоту цилиндра, если диагональ его осевое сечение 15 м, а радиус 5 м
10. Найти площадь сечения шара, радиус которого 29 см, а плоскость сечения удалена от центра шара на 19 см
а) 551π см 2 б) см 2 в) 480π см 2
Тест по теме: «Тела вращения»
1. Какое тело вращения имеет 1 основание?
а) конус б) шар в) цилиндр
2. Какое тело вращения имеет в сечении прямоугольник?
а) конус б) шар в) цилиндр.
3. Какое тело вращения не имеет высоты?
а) конус б) шар в) цилиндр.
4. Какая фигура является осевым сечением шара?
а) круг б) треугольник в) трапеция.
5. Какую фигуру можно вращать вокруг своей стороны, чтобы получить конус?
а) равносторонний б) остроугольный в) прямоугольный
треугольник треугольник треугольник
6. Какой элемент, не принадлежит конусу?
а) высота б) ось в) медиана
7. Найти образующую конуса, если его радиус 4см, а высота 3см.
8. Найдите высоту усеченного конуса, если радиусы его оснований равны 5см и 8см, а образующая 11см.
9. Найти диагональ осевого сечения цилиндра, если его радиус 6 дм, а высота 8 дм
а) 10 дм б) дм в) 14дм
10. Найти площадь сечения шара, радиус которого 39 см, а плоскость сечения удалена от центра шара на 11см
а) 1400π см 2 б) см 2 в) 140π см 2
ОТВЕТЫ к тесту «Тела вращения»
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Номер материала: ДБ-830123
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
В школе в Пермском крае произошла стрельба
Время чтения: 1 минута
Названы лучшие по качеству проведения ЕГЭ регионы России
Время чтения: 1 минута
Школьников не планируют переводить на удаленку после каникул
Время чтения: 1 минута
Минпросвещения объявило конкурс «Учитель-международник»
Время чтения: 1 минута
Стартовала запись российских школьников на бесплатные курсы по программированию
Время чтения: 2 минуты
Школьных охранников предлагают обучать основам психологии
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Какого элемента нет в конусе
рисунок 1 рисунок 2
Конусом (точнее, круговым конусом) называется тело, которое состоит из круга — основания конуса, точки, не лежащей в плоскости этого круга,— вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания (рис. 1) Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими, конуса. Поверхность конуса состоит из основания и боковой поверхности.
Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Наглядно прямой круговой конус можно представлять себе как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис.2).
Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту.
рисунок 3 рисунок 4
рисунок 5 рисунок 6
Плоскость, параллельная основанию конуса и пересекающая конус, отсекает от него меньший конус. Оставшаяся часть называется усеченным конусом (рис. 6).
Пирамидой, вписанной в конус, называется такая пирамида, основание которой есть многоугольник, вписанный в окруж¬ность основания конуса, а вершиной является вершина конуса (рис. 7). Боковые ребра пирамиды, вписанной в конус, яв¬ляются образующими конуса.
рисунок 7 | Задача №2: У пирамиды все боковые ребра равны. Докажите, что она является вписанной в некоторый конус. Решение. Опустим перпендикуляр SO из вершины пирамиды на плоскость основания (рис. 7) и обозначим длину боковых ребер пирамиды через l. Вершины основания удалены от точки О на одно и то же расстояние. Отсюда следует, что наша пирамида вписана в конус, у которого вершиной является вершина пирамиды, а основанием — круг с центром О и радиусом R. |