какое значение имело открытие клеточной теории для развития современной биологии
Какое значение имело открытие клеточной теории для развития современной биологии
«Биология отрицает законы математики: при делении происходит умножение» Валерий Красовский
Клеточная теория
Клетка — структурно-функциональная единица живого организма. Это элементарную, открытую живую систему, способную к саморегуляции, самообновлению и воспроизведению
История изучения клетки
1665
Обнаружена клеточная структура пробковой ткани, введено понятие «клетка»
Антуан ван Левенгук
открыл одноклеточные организмы
Открыто клеточное ядро. Описано ядро растительной клетки
1838-1839
Сформулированы основы клеточной теории: все растительные и животные организмы состоят из клеток, сходных по строению
Сформулировано положение «каждая клетка — из клетки»
Значение клеточной теории
Значение клеточной теории: сходство строения, химического состава, жизнедеятельности, клеточного строения организмов — доказательства родства организмов всех царств живой природы, общности их происхождения, единства органического мира.
Клеточная теория позволила понять, как зарождается, развивается и функционирует живой организм, то есть создала основу эволюционной теории развития жизни, а в медицине – понимания процессов жизнедеятельности и развития болезней на клеточном уровне – что открыло немыслимые ранее новые возможности диагностики, лечение заболеваний.
Современная клеточная теория, ее основные положения
Содержание:
Авторами первой клеточной теории являются зарубежные ученые Шванн Т. и Шлейден М. (1838 г.–1839 г.). В 1855 г. данная теория была дополнена работами Р. Вирхова.
5 положений современной клеточной теории
Основные положения современной клеточной теории:
Создание клеточной теории привело к определению клетки, как элементарной структуре живых систем с сопутствующими признакам и свойствами. С возникновением клеточной теории стали появляться гипотезы о происхождении живых тел.
Развитие знаний о клетке
С появление микроскопа ученые получили возможность для пристального изучения живых клеток. Так, в 1665 г. Р. Гуком на срезе пробки было обнаружены маленькие ячейки, названные им клетками. Позднее такие образования внутри растений обнаружили Н. Грю и М. Мальпиги.
Позднее не имевшим специального образования голландским торговцем А. Левенгуком был создан самодельный микроскоп с увеличением в 270 раз. Ему удалось разглядеть:
Увиденное в микроскоп А. Левенгук всегда описывал и аккуратно зарисовывал, без приведения соответствующих объяснений. Так, ему удалось разглядеть бактериальные клетки и одноклеточные организмы.
Львиная доля открытий компонентов клетки выпала на первую половину XIX в.:
Исследования русского ученого-эмбриолога Карла Бэра (1827 г.) приводят к обнаружению яйцеклеток у млекопитающих животных и человека. Данное открытие «сломало» господствующее тогда утверждение о развитии организмов только из гамет мужского типа. Работы Карла Бэра доказали процесс формирования многоклеточных тел из оплодотворенных яйцеклеток. Сравнение им зародышей разных организмов на ранних этапах развития доказало сходство их организации и дало толчок к мысли о единстве появления всего живого на Земле.
К 1850-у году в биологической науке было сформировано большое количество открытий, связанных с клеткой. Привести их в систему помогли работы немецкого зоолога Шванна Т. и М. Шлейдена. Они создали первую клеточную теорию, объясняющую многие процессы внутри живых тел.
Исследования патологоанатома и врача из Германии – Рудольфа Вирхова дополнили созданную ранее Шванном Т. и М. Шлейденом клеточную теорию. Вирхов Р. указал на возникновения новых клеток путем деления исходных (материнских) структур. Таким образом, он доказал возникновение «клетки от клетки» и «живого от живого».
После создания основных положений теории о структурно-функциональной единице живого (клетке) были сделаны и другие открытия, касающиеся происходящих в ней процессов. Так, усовершенствование к концу XIX в. микроскопа дало толчок для уточнения состава клетки с проведением описания имеющихся органоидов. Органоидами стали именовать клеточные компоненты постоянного строения, которые выполняют разные функции.
Позднее был изучен процесс деления, происходящий в процессе митоза либо мейоза. Данные процессы стали основой способов воспроизведения клеточных структур и получили статус «передатчиков» наследственной информации. С использованием современных физико-химических методик детальнее были изучены процессы передачи и хранения наследственных признаков. Также тщательнее были обследованы тончайшие детали всех клеточных компонентов постоянного и переменного состава. Таким образом, было выделено особое биологическое направление — «цитология», занимающееся изучением структуры и жизнедеятельности клеток живых организмов.
К. Бэр открыл яйцеклетки птиц и животных.
Р. Вихров дополнил теорию: «Клетка — единица структуры и функции живых организмов».
Клеточное строение организмов
Клеточное строение организмов — основа единства органического мира, доказательство родства живой природы
Как уже было отмечено ранее, бактериям, грибам, растениям и животным свойственно наличие клеток разной формы и специализации. Вирусные частицы также не могут жить без живых клеток, так как там происходят процессы их размножения, хотя сами они являются неклеточными формами жизни.
В полноценной живой клетке постоянно происходят следующие процессы:
Наличие совокупности данных признаков отличает живые организмы от неживых тел. Кроме этого, внутри живых клеточных структур хранятся, а при размножении передаются наследственные признаки, заключенные в генах. При половом размножении наследственные признаки комбинируются, что приводит к формированию новых генетических наборов и появляются новые признаки у организмов. Таким образом происходит жизнедеятельность живых организмов.
В природе существует великое множество живых клеток, которые различаются строением, формами и специализацией, но для всех их характерно наличие:
Возникновению современных клеточных структур сопутствовал длительный эволюционный процесс, происходящий в биосфере. Он делился на:
Образование многоклеточных форм жизни не является банальным суммированием клеток, а выступает результатом сложных эволюционных преобразований, происходящих с сохранением присущих живому признаков. Таким образом организмы приобретали новые свойства и функции. В результате менялось их строение и образ жизни. Происходящие эволюционные преобразования привели к появлению новых видов и указали на общность происхождения всего живого — единого предка.
Полноценное существование живых организмов возможно лишь тогда, когда входящие в его состав клетки будут выполнять присущие им функции. Простое сложение клеток друг с другом не приведет к созданию целостного организма, так как полноценно функционировать он не сможет. Так, было открыто единство целостного и дискретного составляющего.
Увеличение скорости метаболизма достигается ростом количества маленьких клеток у многоклеточных тел. При нарушении функций одной клетки (ее гибель) происходит восстановление ее деятельности вследствие воспроизведения клеточных структур. Без клеток гены существовать не могут, а значит. невозможно хранить и передавать наследственную информацию. Аналогично и с энергией, которая также не сможет аккумулироваться от Солнца, если не будет растительных клеток с хлоропластами.
Благодаря разделению клеточных функций в многоклеточных телах (организмах) живые системы смогли приспосабливаться к разным условиям существования и средам обитания. В результате возникали новые систематические категории – виды, роды, классы. Таким образом, шло длительное усложнение их организационного строения.
После установления единого плана строения клеточных структур у всего живого возникли предпосылки единого происхождения живых организмов на Земле. Данные предпосылки были доказаны многочисленными открытиями в области палеонтологии, эмбриологии и других областях биологии. Так, возникло представление не только о едином плане строения живых организмов, но и доказательство единства происхождения органического мира.
История, основные положения и значение клеточной теории
Клеточная теория
История клеточной теории
Изобретение микроскопа и усовершенствование методов микроскопических исследований позволили открыть и изучить клетку.
Первым увидел клетку английский ученый Р. Гук. В 1665 году при помощи увеличительных линз он стал свидетелем деления тканей коры пробкового дуба на ячейки — клетки. Но, как позже стало известно, он стал первооткрывателем не клетки в прямо значении этого слова, а внешних оболочек растительных клеток.
Открытие мира одноклеточных организмов связано с А. Левенгуком — он первым увидел животные клетки, а именно эритроциты. Дальнейшее описание животных клеток принадлежит Ф. Фонтане. Поскольку четкого представления о том, что такое клетка, не было, исследования ученого не привели к понятию универсальности клеточного строения.
Первоначально Р. Гук считал, что клетки представляют собой пустоты или поры между волокнами растений. Это мнение нашло подтверждение в ходе исследований, проведенных М. Мальпиги, Н. Грю, Ф. Фонтана, которые наблюдали за растительными объектами под микроскопом. Они назвали клетки «пузырьками».
Наибольший вклад в развитие микроскопических исследований организмов растений и животных принадлежит А. Левенгуку. Результаты своих исследований он оформил в книгу «Тайны природы».
По иллюстрациям, представленным в этой книге, понятны клеточные структуры растительных и животных организмов, хотя самим ученым эти описанные структуры не понимались как клеточные образования. Все потому, что исследования ученого были, скорее, случайные, чем систематические.
В начале 19 века такие ученые как Г. Линк, Г. Травенариус и К. Рудольф в своих исследованиях продемонстрировали, что клетки не являются пустотами — это самостоятельные образования, ограниченные стенками. Было доказано, что у клеток есть содержимое, названное Я. Пуркинье протоплазмой. Р. Броун выделил ядро в качестве постоянной части клеток.
Далее Т. Шванн занимался анализом данных литературы о клеточном строении растений и животных. Он сопоставил имеющиеся данные с собственными исследованиями, результатом чего стала его собственный труд. Ученый продемонстрировал, что клетки — элементарные живые структурные единицы растительных и животных организмов. И. Шванн пояснил, что у них есть общий план строения и образуются они одинаковым способом. Все это стало основой клеточной теории. Поэтому Т. Швана можно считать тем, кто стоял у истоков создания клеточной теории.
Перед тем как сформулировать основные положения клеточной теории, на протежении долгого периода времени ученые накапливали наблюдения за строением одноклеточных и многоклеточных организмов. Одновременно с этим совершенствовались и различные оптические методы в исследованиях.
Все клетки бывают двух типов: ядерные (эукариотические) и безъядерные (прокариотические). Организмы животных строятся на экукариотические клетках. Нет ядер только у красных клеток крови млекопитающих — эритроциты, которые теряют свои ядра в процессе развития.
В ходе изучения строения и функций клеток менялось и определение клетки.
Сегодня под клеткой понимают структурно упорядоченную систему биополимеров, ограниченную активной оболочкой. Биополимеры образуют ядро и цитоплазму, принимают участие в единой совокупности процессов метаболизма и обеспечивают поддержку и воспроизведение самой системы.
Клеточная теория — это обобщенное представление о строении клетки, являющейся единицей живого, ее размножении и роли в процессе формирования многоклеточных организмов.
Открытия в 19 веке, связанные с клеткой, были связаны с развитием микроскопии. В это же время происходит изменение представления о клетке. Теперь основой клетки стала считаться не клеточная оболочка, а ее содержимое — протоплазма. Также происходит открытие ядра как постоянного элемента клетки.
Благодаря тому, что появилась четкая информация о строении и развитии клетки, стало возможным ее обобщить. В 1839 году такое обобщение сделал Т. Шванн, который и сформулировал клеточную теорию. Автор клеточной теории считал, что между клетками животных и растений нет принципиальной разницы. В этом, в общем, и заключается сущность клеточной теории.
Развитием этой теории позже занимался немецкий патолог Р. Вирхов. Он является автором идеи, что возникновение клетки происходит исключительно из другой клетки при помощи размножения.
Положения клеточной теории
Положения клеточной теории, которые постепенно уточнялись и дополнялись, были опубликованы в труде под названием «Микроскопические исследования о соответствии в строении и произрастании животных и растений» (1839 г). Эта работа принадлежит Т. Шванну.
Вот основные положения клеточной теории:
Активное развитие в 19 и 20 веках такой науки как цитология способствовало подтверждению основных положений клеточной теории. Она же предоставила новые данные о строении и функциях клетки.
Кроме того, отдельные тезисы клеточной теории, предложенные Т. Шванном, были исключены из теории. К примеру, он считал, что отдельная клетка многоклеточного организма способна самостоятельно функционировать, что многоклеточный организм — простая совокупность клеток, что неклеточная «бластема» — основа развития клетки.
После усовершенствования, остались следующие положения клеточной теории:
Клеточная теория на современном этапе развития биологии во многом отличается от теории и взглядов на клетку, существовавших не только в 19 веке, в период формулировки Т. Шванном первой клеточной теории, но и в середине 20 века.
Сегодня клеточная теория — это система научных взглядов, представленная в виде теорий, законов и принципов.
Главные положения клеточной теории актуальны и сегодня, несмотря на то, что за 150 лет о структуре, развитии и жизнедеятельности клеток были получены новые сведения.
Значение клеточной теории
Клеточная теория в науке открыла и укрепила представление о клетке как важнейшей составляющей всех организмов и главным их строительным элементом. Клетка является эмбриональной основой многоклеточных организмов, поскольку любой организм развивается с зиготы.
Благодаря клеточной теории можно говорить о единстве живой природы. Открытие этой теории — едва ли не самое важное событие в области биологии.
Клеточная теория стимулировала развитие таких наук как эмбриология, физиология и гистология. На ее основе возникло материалистическое понимание жизни, стало возможным объяснение эволюционной взаимосвязи между организмами, формулировка сущности онтогенеза.
Несмотря на то, что сведения о строении, развитии и функционировании клетки постоянно пополняются, основные положения клеточной теории, сформулированные более 100 лет назад, остаются актуальными.
Клетка — основа всех биохимических и физиологических процессов в организме, ведь все эти процессы происходят непосредственно на клеточном уровне. Клеточная теория позволила сделать вывод о схожести химического состава всех клеток и подтвердить единство органического мира.
Клеточная теория является одни из биологических обобщений, свидетельствующих о клеточном строении всех организмов.
Наряду с законом превращения энергии и эволюционной теорией Дарвина, это одно из наиболее значимых открытий в области естествознания 19 века.
Клеточная теория оказала заметное влияние на развитие биологии как науки. Она указала на единство живой природы и выделила структурную единицу этого единства — клетку.
Помимо огромного влияния на биологию как науку, теория стала фундаментом для развития других дисциплин: эмбриологии, гистологии, физиологии. С ее помощью удалось объяснить родственные взаимосвязи организмов, механизм индивидуального развития.
Теория является важным обобщением современной биологии, системой положений и принципов, раскрывающими механизмы роста, развития и размножения организмов.
Значение клеточной теории
Вопрос 1
Клеточная теория: история и современное состояние. Значение клеточной теории для биологии и медицины.
Клеточная теория сформирована немецким исследователем – зоологом Т. Шванном(1839). В своих теоритических построениях он опирался на работы ботаника М. Шлейдена (считается соавтором теории). Исходя от предположения об общей природе растительных и животных клеток (одинаковый механизм происхождения ). Шванн обобщил многочисленные данные в виде теории. В конце прошлого столетия клеточная теория получила дальнейшее развитие в работах Р. Вирхова
Основные положения клеточной теории:
1. Клетка элементарная единица живого, вне клетки жизни нет. Клетка единая система, включающая множество закономерно связанных с друг другом элементов (современная трактовка).
2. Клетки гомологичны по строению и основным свойствам.
3. Клетки увеличиваются в числе путем деления исходной клетки, после удвоения его генетического материала.
4. Многоклеточные организмы представляют собой новую систему взаимосвязанных между собой клеток, объединенных и интегрированных в единую систему тканей и органов с помощью нервной и гуморальной регуляции.
5. Клетки организма тотатипентны так как обладают генетическим потенциалом всех клеток данного организма, но отличаются друг от друга экспрессией гена.
Значение клеточной теории
Клеточная теория позволила понять как зарождается, развивается и функционирует живой организм, то есть создала основу эволюционной теории развития жизни, а в медицине – понимания процессов жизнедеятельности и развития болезней на клеточном уровне – что открыло немыслимые ранее новые возможности диагностики, лечение заболеваний.
Cтало ясно, что клетка — важнейшая составляющая часть живых организмов, их главный морфофизиологический компонент. Клетка — это основа многоклеточного организма, место протекания биохимических и физиологических процессов в организме. На клеточном уровне в конечном итоге происходят все биологические процессы. Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира.
Прокариотические и эукариотические клетки.
Прокариотическая клетка (доядерные – 3,5 млрд лет назад) – это наиболее примитивные, очень просто устроенные, сохраняющие черты глубокой древности организмы.(одноклеточные живые организмы не обладающие оформленным клеточным ядром и другими внутренними мембранными органоидами).
1. Малые размеры клеток
2. Нуклеоид – аналог ядра. Замкнутая кольцевая ДНК.
3. Отсутствуют мембранные органеллы
4. Нет клеточного центра
5. Клеточная стенка особого строения, слизистая капсула.
6. Размножение делением пополам (может происходить обмен генетической информацией).
7. Нет циклоза, экзо- и эндоцитоза.
8. Разнообразие обмена веществ
9. Размер не более 0,5-3 мкм.
10. Тип питания осмотический.
11. Наличие жгутиков плазмид, и газовых вакуолей.
12. Размер рибосом 70s
Эукариотическая клетка(ядерные – 1,5-2 млрд лет назад) –надцарство живых организмов, клетки которых содержат ядра:
-биомембрана (плазмалемма, цитолемма)
-кариолемма (ядерная оболочка)
Согласно жидкостно-мозаичной модели структуры мембраны, предложенной Сингером, биологическая мембрана представляет собой два параллельных слоя липидов (бимолекулярный слой, липидный бислой). Мембранные липиды имеют гидрофобную (углеводородные остатки жирных кислот и др.) и гидрофильную (фосфат, холин, коламин, сахар и т.п.) части. Такие молекулы образуют в клетке бимолекулярные слои: гидрофобные части их повернуты дальше от водного окружения, т.е. друг к другу, и удерживаются вместе сильными гидрофобными взаимодействиями и слабыми силами Лондона-Ван-дер-Ваальса. Таким образом, мембраны на обеих наружных поверхностях гидрофильны, а внутри – гидрофобны. Поскольку гидрофильные части молекул поглощают электроны, они видны в электронном микроскопе как два темных слоя. При физиологических температурах мембраны находятся в жидкокристаллическом состоянии: углеводородные остатки вращаются вдоль своей продольной оси и диффундируют в плоскости слоя, реже перескакивают из одного слоя в другой, не нарушая прочных гидрофобных связей. Чем большую долю составляют ненасыщенные жирные кислоты, тем ниже температура фазового перехода (точка плавления) и тем более жидкой бывает мембрана. Более высокое содержание стеролов с их жесткими гидрофобными молекулами, лежащими в гидрофобной толще мембраны, стабилизирует мембрану (главным образом у животных). В мембрану вкраплены различные мембранные белки. Некоторые из них находятся на внешней или на внутренней поверхности липидной части мембраны; другие пронизывают всю толщу мембраны насквозь. Мембраны полупроницаемы; они обладают мельчайшими порами, через которые диффундируют вода и другие небольшие гидрофильные молекулы. Для этого используются внутренние гидрофильные области интегральных мембранных белков или отверстия между соприкасающимися интегральными белками (туннельные белки)
1. Ограничение и обособление клеток и органелл. Обособление клеток от межклеточной среды обеспечивается плазматической мембраной, защищающей клетки от механического и химического воздействий. Плазматическая мембрана обеспечивает также сохранение разности концентраций метаболитов и неорганических ионов между внутриклеточной и внешней средой
2. Контролируемый транспорт метаболитов и ионов определяет внутреннюю среду, что существенно для гомеостаза, т.е. поддержания постоянной концентрации метаболитов и неорганических ионов, и других физиологических параметров. Регулируемый и избирательный транспорт метаболитов и неорганических ионов через поры и посредством переносчиков становится возможным благодаря обособлению клеток и органелл с помощью мембранных систем.
3. Восприятие внеклеточных сигналов и их передача внутрь клетки а также инициация сигналов.
4. Ферментативный катализ. В мембранах на границе между липидной и водной фазами локализованы ферменты. Именно здесь происходят реакции с неполярными субстратами. Примерами служат биосинтез липидов и метаболизм неполярных ксенобиотиков В мембранах локализованы наиболее важные реакции энергетического обмена, такие, как окислительное фосфорилирование и фотосинтез
5. Контактное взаимодействие с межклеточным матриксом и взаимодействие с другими клетками при слиянии клеток и образовании тканей.
Мембранные липиды. Принципы формирования бислоя. Липиды мембран
Состав липидов биологических мембран очень разнообразен. Характерными представителями липидов клеточных мембран являются фосфолипиды, сфингомиелины и холестерин (стероидный липид). Характерной особенностью мембранных липидов является разделение их молекулы на две функционально различные части: не полярные, не несущие зарядов хвосты, состоящие из жирных кислот, и заряженные полярные головки. Полярные головки несут на себе отрицательные заряды или могут быть нейтральными. Наличие неполярных хвостов объясняет хорошую растворимость липидов в жирах и органических растворителях. В эксперименте, смешивая с водой выделенные из мембран липиды можно получить бимолекулярные слои или мембраны толщиной около 7,5 нм, где периферические зоны слоя — это гидрофильные полярные головки, а центральная зона — незаряженные хвосты молекул липидов. Такое же строение имеют все естественные клеточные мембраны. Клеточные мембраны сильно отличаются друг от друга по составу липидов. Например, плазматические мембраны клеток животных богаты холестерином (до 30%), и в них мало лецитина, в то время как мембраны митохондрий богаты фосфолипидами и бедны холестерином. Липидные молекулы могут перемещаться вдоль липидного слоя, могут вращаться вокруг своей оси, а также переходить из слоя в слой. Белки, плавающие в «липидном озере», тоже обладают некоторой латеральной подвижностью. Состав липидов по обе стороны мембраны различен, что определяет асимметричность в строении билипидного слоя.
Вопрос 5
Мембранные белки имеют пересекающие клеточную мембрану домены, но части их выступают из мембраны в межклеточное окружение и цитоплазму клетки. Выполняют функцию рецепторов, т.е. осуществляют передачу сигналов, а также обеспечивают трансмембранный транспорт различных веществ. Белки-транспортеры специфичны, каждый из них пропускает через мембрану только определенные молекулы или определенный тип сигнала.
Классификация:
1. Топологические (поли-, монотопические)
2. Биохимические (интегральные и периферические)
Топологические:
1) политопические, или трансмембранные белки, пронизывающие бислой насквозь и контактирующие с водной средой по обеим сторонам мембраны.
2) Монотопические белки постоянно встроены в липидный бислой, но соединены с мембраной только на одной стороне, не проникая на противоположную.
Биохимические:
1) интегральные прочно встроены в мембрану и могут быть увлечены из липидного окружения только с помощью детергентов или неполярных растворителей
2) периферические белки, которые высвобождаются в сравнительно мягких условиях (например путем солевого раствора)
Вопрос 6
Организация надмембранного комплекса у клеток разных типов. Гликокаликс.
Надмембранный комплекс | бактерии | растения | животные | грибы |
1) слизистая капсула | + | +- | — | — |
2)клеточная стенка (оболочка) | + Из муреина | + Из целлюлозы | _ | + Из хитина |
3) гликокаликс | — | — | + | — |
У грамположительных бактерий есть однослойная, толщиной 70-80 нм. клеточная стенка, образованная сложным белково-углеводным комплексом молекул (пептидогликаны). Это система длинных полисахаридных (углеводных) молекул, связанных между собой короткими белковыми мостиками. Они располагаются в несколько слоев параллельно поверхности бактериальной клетки. Все эти слои пронизаны молекулами сложных углеводов – тейхоевых кислот.
У грамотрицательных бактерий клеточная стенка более сложная и имеет двойную структуру. Над первичной, плазматической мембраной, строится еще одна мембрана и скрепленная с ней пептидгликанами.
Основным компонентом клеточной стенки растительных клеток является сложный углевод – целлюлоза. Прочность их очень велика и сравнима с прочностью стальной проволоки. Слои макрофибрилл располагаются под углом друг к другу, создавая мощный многослойный каркас.
Эукариотические клетки животных не образуют клеточных стенок, но на поверхности их плазматической мембраны есть сложный мембранный комплекс – гликокаликс. Он образован системой периферических белков мембраны, углеводными цепями мембранных гликопротеинов и гликолипидов, а также надмембранными участками интегральных белков, погруженных в мембрану.
Гликокаликс выполняет ряд важных функций: он участвует в рецепции молекул, содержит молекулы межклеточной адгезии, отрицательно заряженные молекулы гликокаликса создают электрический заряд на поверхности клеток. Определенный набор молекул на поверхности клеток является своеобразным маркером клеток, определяя их индивидуальность и узнаваемость сигнальными молекулами организма. Это свойство имеет очень большое значение в работе таких систем как: нервная, эндокринная, иммунная. В ряде специализированных клеток (например: во всасывающих клетках кишечного эпителия) гликокаликс несет основную функциональную нагрузку в процессах мембранного пищеварения