какое взаимодействие существует между заряженными телами частицами

Тест по физике «Электростатика»

Тест по физике «Электростатика» для учащихся 10 класса с ответами.

Тест состоит из 12 заданий и предназначен для проверки знаний по данной теме. К каждому заданию дано 3 ответа, из которых нужно выбрать один верный.

1. Раздел физики, изучающий заряженные тела…

А) механика
Б) статика
В) электродинамика

2. Между заряженными телами, частицами существует…

А) сила отталкивания
Б) сила притяжения
В) и то и другое

3. Процесс, приводящий к появлению на телах электрических зарядов, называется…
А) магнетизм
Б) электризация
В) и то и другое

4. В замкнутой системе заряд уменьшается, если…

А) число заряженных частиц уменьшается
Б) число заряженных частиц увеличивается
В) число частиц не меняется

5. Напряженность электрического поля измеряется….

А) в Амперах
Б) в Джоулях
В) в Вольтах

6. Сила, действующая на заряд при увеличении заряда в два раза увеличивается во сколько раз?

А) в 4 раза
Б) в 2 раза
В) в 6 раз

7. Модуль напряженности зависит от…

А) величины заряда
Б) массы заряда
В) числа зарядов

8. Диэлектриками называются тела, которые….

А) проводят электрический ток
Б) не проводят электрический ток
В) и то и другое

9. Два точечных заряда отталкиваются друг от друга, если заряды…

А) одинаковы по знаку и любые по модулю
Б) разные по знаку и одинаковые по модулю
В) различные по знаку и любые по модулю

10. Сила кулоновского взаимодействия двух точечных зарядов…

А) прямо пропорциональна между ними
Б) обратно пропорциональна между ними
В) обратно пропорциональна квадрату расстояния между ними

11. Скорость распространения электромагнитных взаимодействий

А) всегда равна скорости света
Б) равна скорости света в вакууме
В) определяется только при условии, что заряды неподвижны

12. Два точечных заряда действуют друг на друга с силой 16 Н, какой будет сила взаимодействия между ними, если уменьшить значение каждого заряда в четыре раза
А) 2Н
Б) 1Н
В) 3Н

Источник

Электростатика. Взаимодействие зарядов. Два вида электрических зарядов.

Простые опыты по электризации различных тел иллюстрируют следующие положения.

1. Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.

2. Заряды (или заряженные тела) взаимодействуют друг с другом. Одноименные заряды оттал­киваются, а разноименные заряды притягиваются.

3. Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда. При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — поло­жительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями заря­дов с помощью электрометров.

Элементарный электрический заряд (е) — это наименьший электрический заряд, положи­тельный или отрицательный, равный величине заряда электрона:

Заряженных элементарных частиц существует много, и почти все они обладают зарядом +e или -e, однако эти частицы весьма недолговечны. Они живут меньше миллионной доли се­кунды. Только электроны и протоны существуют в свободном состоянии неограниченно долго.

Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома, вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электроцентралей.

В обычных условиях тела, состоящие из атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными; тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, — отрицательно.

Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приоб­ретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся заря­дов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.

Определение заряда.

Следует особо подчеркнуть, что заряд является неотъемлемым свойством частицы. Частицу без заряда представить себе можно, но заряд без частицы — нельзя.

Проявляют себя заряженные частицы в притяжении (разноименные заряды) либо в отталкивании (одноименные заряды) с силами, на много порядков превышающими гравитационные. Так, сила электрического притяжения электрона к ядру в атоме водорода в 10 39 раз больше силы гра­витационного притяжения этих частиц. Взаимодействие между заряженными частицами называется электромагнитным взаимодействием, а электрический заряд определяет интенсивность электромагнитных взаимодействий.

В современной физике так определяют заряд:

Электрический заряд — это физическая величина, являющаяся источником электрического поля, посредством которого осуществляется взаимодействие частиц, обладающих зарядом.

Источник

Напряженность электрического поля. Принцип суперпозиции

какое взаимодействие существует между заряженными телами частицами

Конспект урока на тему:

Напряженность электрического поля. Принцип суперпозиции. (10 класс)

-раскрыть материальный характер электрического поля, дать понятие напряженности электрического поля, исходя из ее общего определения, научить учащихся применять формулу в решение несложных задач на расчет напряженности. Величины пробного заряда и силы.

-развивать психические познавательные процессы: внимание, мышление, речь.

-воспитывать интерес к предмету, культуру поведения.

какое взаимодействие существует между заряженными телами частицами

Содержимое разработки

Конспект урока на тему:

Напряженность электрического поля. Принцип суперпозиции. (10 класс)

-раскрыть материальный характер электрического поля, дать понятие напряженности электрического поля, исходя из ее общего определения, научить учащихся применять формулу какое взаимодействие существует между заряженными телами частицамив решение несложных задач на расчет напряженности. Величины пробного заряда и силы.

-развивать психические познавательные процессы: внимание, мышление, речь.

-воспитывать интерес к предмету, культуру поведения.

Изложение нового материала

Проверка домашнего задания

Электризация тел. Закон сохранения заряда. Закон Кулона

Как называется раздел физики, изучающий неподвижные заряженные тела? /электростатика/

Какое взаимодействие существует между заряженными телами, частицами? /электромагнитное/

Какая физическая величина определяет электромагнитное взаимодействие? /электрический заряд/

Зависит ли величина заряда от выбора системы отсчета? /Нет/

Можно ли сказать, что заряд системы складывается из зарядов тел, входящих в систему? /Можно/

Как называется процесс, приводящий к появлению на телах электрических зарядов? /Электризация/

Если тело электрически нейтрально, означает ли это, что оно не содержит электрических зарядов? /Нет/

Верно ли утверждение, что в замкнутой системе алгебраическая сумма зарядов всех тел системы остается постоянной? /Да/

Если в замкнутой системе число заряженных частиц уменьшилось, то означает ли это, что заряд всей системы тоже уменьшился? /Нет/

Создаем ли мы при электризации электрический заряд? /Нет/

Может ли заряд существовать независимо от частицы? /Нет/

Тело, суммарный положительный заряд частиц которого равен суммарному отрицательному заряду частиц, является… /Нейтральным/

Как изменится сила взаимодействия заряженных частиц с увеличением заряда любой из этих частиц? /Увеличится/

Как изменится сила взаимодействия при перемещении зарядов в среду? /Уменьшится/

Как изменится сила взаимодействия с увеличением расстояния между зарядами в 3 раза? /Уменьшится в 9 раз/

Как называется величина, характеризующая электрические свойства среды? /Диэлектрической проницаемостью среды/

В каких единицах измеряется электрический заряд? /В кулонах/

Если мы рассмотрим рисунок:

какое взаимодействие существует между заряженными телами частицами

И зададим вопрос: «Что действует на заряд В? », то Кулон ряд других ученых однозначно отвечали: «Заряд А».

Однако, дальнейшее развитие науки показало, что взаимодействие зарядов носит сложный характер. Заряды воздействуют друг с другом посредством полей. Так, взаимодействие зарядов А и В происходит следующим образом. Вокруг заряда А существует электрическое поле, простирающееся на больший объем пространства, чем занимает сам заряд. Заряд В оказывается расположенным в этом электрическом поле, и оно действует на него силой какое взаимодействие существует между заряженными телами частицамиАналогично вокруг заряда В существует поле, которое действует на заряд А силой какое взаимодействие существует между заряженными телами частицами

Электрическое поле – особый вид материи. Вокруг наэлектризованного тела существует какой-то материальный передатчик взаимодействия – это поле. Какими же свойствами обладает электрическое поле?

Свойства электрического поля:

Порождается электрическими зарядами

Действует на электрический заряд с силой

Способно совершать работу по перемещению заряда, то есть поле обладает энергией

Обладает свойством суперпозиций

Электрическое поле точечного заряда убывает обратно пропорционально r 2 (

какое взаимодействие существует между заряженными телами частицами

Распространяется со скоростью с = 300 000 км/с (с – скорость распространения электромагнитных взаимодействий).

Для характеристики полей вводится соответствующие физические величины, отличные от характеристик вещества. Для электрического поля важнейшей характеристикой является напряженность.

Поместим в поле, созданное зарядом q1, некоторый пробный заряд q’, который будет испытывать действие со стороны заряда q1.

какое взаимодействие существует между заряженными телами частицами

Обозначим положение заряда q’ буквой А. Сила воздействия этих двух точечных зарядов равна:

какое взаимодействие существует между заряженными телами частицами

Если мы уберем заряд q’ и поместим на его место другой заряд q’’, то сила взаимодействия будет равна:

какое взаимодействие существует между заряженными телами частицами

Не трудно заметить, что отношения какое взаимодействие существует между заряженными телами частицамии это отношение есть величина постоянная для данной точки поля:

какое взаимодействие существует между заряженными телами частицами

Значит, выражение какое взаимодействие существует между заряженными телами частицамиможет являться характеристикой электрического поля в данной точке. Это отношение обозначается через букву E и называется напряженностью электрического поля:

какое взаимодействие существует между заряженными телами частицами

Напряженностью электрического поля какое взаимодействие существует между заряженными телами частицамиравна отношению силы, с которой поле действует на точечный заряд к этому заряду. Это силовая характеристика электрического поля.

В системе СИ единицей напряженности является:

какое взаимодействие существует между заряженными телами частицами

Силу, действующую на точечный заряд q, можно определить из формулы:

какое взаимодействие существует между заряженными телами частицами

Направление вектора направленности какое взаимодействие существует между заряженными телами частицамисовпадает с направлением силы какое взаимодействие существует между заряженными телами частицами, действующей на положительный заряд. Если мы имеем положительный заряд q1 0, то в точке А создана напряженность поля какое взаимодействие существует между заряженными телами частицами, которая будет направлена от заряда.

Если же поле создано отрицательным зарядом q2

какое взаимодействие существует между заряженными телами частицамикакое взаимодействие существует между заряженными телами частицами

Напряженность поля не зависит от заряда вносимого в данную точку поля, она зависит только от поля и от положения пробного заряда в этом поле.

Пробный заряд – это точечный положительный заряд, который настолько мал, что своим полем не вызывает перераспределения заряда на теле, поле которого исследуется (пух, бусинка, ватка).

Напряженность поля точечного заряда может быть рассчитана по формуле:

какое взаимодействие существует между заряженными телами частицами

Принцип суперпозиции полей

Опыт показывает, что если на электрический заряд q действуют одновременно электрические поля нескольких источников, то результирующая сила оказывается равной сумме, действующей со стороны каждого поля в отдельности.

Электрические поля подчиняются принципу суперпозиций:

Напряженность результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности:

какое взаимодействие существует между заряженными телами частицамиили какое взаимодействие существует между заряженными телами частицами

Источник

Какое взаимодействие существует между заряженными телами частицами

Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q. В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10 –6 Кл), нанокулонами (1 нКл = 10 –9 Кл) и пикокулонами (1 пКл = 10 –12 Кл). Электрический заряд обладает следующими свойствами:

1. Электрический заряд является видом материи.

2. Электрический заряд не зависит от движения частицы и от ее скорости.

3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

4. Существует два рода электрических зарядов, условно названных положительными и отрицательными.

5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.

6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом. Его значение:

e = 1,602177·10 –19 Кл ≈ 1,6·10 –19 Кл.

Электрический заряд любого тела всегда кратен элементарному заряду:

какое взаимодействие существует между заряженными телами частицами

где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е; 1,7е; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

7. Закон сохранения электрического заряда. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

какое взаимодействие существует между заряженными телами частицами

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q 1 и q 2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

какое взаимодействие существует между заряженными телами частицами

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит. Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

какое взаимодействие существует между заряженными телами частицами

где: L – длина нити. Измеряется в Кл/м.

2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

какое взаимодействие существует между заряженными телами частицами

3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

какое взаимодействие существует между заряженными телами частицами

Обратите внимание на то, что масса электрона равна:

Закон Кулона

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь. На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных точечных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

какое взаимодействие существует между заряженными телами частицами

где: ε – диэлектрическая проницаемость среды – безразмерная физическая величина, показывающая, во сколько раз сила электростатического взаимодействия в данной среде будет меньше, чем в вакууме (то есть во сколько раз среда ослабляет взаимодействие). Здесь k – коэффициент в законе Кулона, величина, определяющая численное значение силы взаимодействия зарядов. В системе СИ его значение принимается равным:

Силы взаимодействия точечных неподвижных зарядов подчиняются третьему закону Ньютона, и являются силами отталкивания друг от друга при одинаковых знаках зарядов и силами притяжения друг к другу при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел, равномерно заряженных сфер и шаров. В этом случае за расстояния r берут расстояние между центрами сфер или шаров. На практике закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними. Коэффициент k в системе СИ иногда записывают в виде:

какое взаимодействие существует между заряженными телами частицами

где: ε 0 = 8,85∙10 –12 Ф/м – электрическая постоянная.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Запомните также два важных определения:

Проводники – вещества, содержащие свободные носители электрического заряда. Внутри проводника возможно свободное движение электронов – носителей заряда (по проводникам может протекать электрический ток). К проводникам относятся металлы, растворы и расплавы электролитов, ионизированные газы, плазма.

Диэлектрики (изоляторы) – вещества, в которых нет свободных носителей заряда. Свободное движение электронов внутри диэлектриков невозможно (по ним не может протекать электрический ток). Именно диэлектрики обладают некоторой не равной единице диэлектрической проницаемостью ε.

Для диэлектрической проницаемости вещества верно следующее (о том, что такое электрическое поле чуть ниже):

какое взаимодействие существует между заряженными телами частицами

Электрическое поле и его напряженность

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на пробный заряд, помещенный в данную точку поля, к величине этого заряда:

какое взаимодействие существует между заряженными телами частицами

Напряженность электрического поля – векторная физическая величина. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд. Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим.

Для наглядного представления электрического поля используют силовые линии. Эти линии проводятся так, чтобы направление вектора напряженности в каждой точке совпадало с направлением касательной к силовой линии. Силовые линии обладают следующими свойствами.

Электрическое поле называют однородным, если вектор напряжённости одинаков во всех точках поля. Например, однородное поле создаёт плоский конденсатор – две пластины, заряженные равным по величине и противоположным по знаку зарядом, разделённые слоем диэлектрика, причём расстояние между пластинами много меньше размеров пластин.

Во всех точках однородного поля на заряд q, внесённый в однородное поле с напряжённостью E, действует одинаковая по величине и направлению сила, равная F = Eq. Причём, если заряд q положительный, то направление силы совпадает с направлением вектора напряжённости, а если заряд отрицательный, то вектора силы и напряжённости противоположно направлены.

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рисунке:

какое взаимодействие существует между заряженными телами частицами

Принцип суперпозиции

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряжённостей электрических полей, создаваемых в той же точке зарядами в отдельности:

какое взаимодействие существует между заряженными телами частицами

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции. В соответствии с законом Кулона, напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю:

какое взаимодействие существует между заряженными телами частицами

Это поле называется кулоновским. В кулоновском поле направление вектора напряженности зависит от знака заряда Q: если Q > 0, то вектор напряженности направлен от заряда, если Q

Напряженность электрического поля, которую создает заряженная плоскость вблизи своей поверхности:

какое взаимодействие существует между заряженными телами частицами

Итак, если в задаче требуется определить напряженность поля системы зарядов, то надо действовать по следующему алгоритму:

Потенциальная энергия взаимодействия зарядов

Электрические заряды взаимодействуют друг с другом и с электрическим полем. Любое взаимодействие описывает потенциальной энергией. Потенциальная энергия взаимодействия двух точечных электрических зарядов рассчитывается по формуле:

какое взаимодействие существует между заряженными телами частицами

Обратите внимание на отсутствие модулей у зарядов. Для разноименных зарядов энергия взаимодействия имеет отрицательное значение. Такая же формула справедлива и для энергии взаимодействия равномерно заряженных сфер и шаров. Как обычно, в этом случае расстояние r измеряется между центрами шаров или сфер. Если же зарядов не два, а больше, то энергию их взаимодействия следует считать так: разбить систему зарядов на все возможные пары, рассчитать энергию взаимодействия каждой пары и просуммировать все энергии для всех пар.

Задачи по данной теме решаются, как и задачи на закон сохранения механической энергии: сначала находится начальная энергия взаимодействия, потом конечная. Если в задаче просят найти работу по перемещению зарядов, то она будет равна разнице между начальной и конечной суммарной энергией взаимодействия зарядов. Энергия взаимодействия так же может переходить в кинетическую энергию или в другие виды энергии. Если тела находятся на очень большом расстоянии, то энергия их взаимодействия полагается равной 0.

Обратите внимание: если в задаче требуется найти минимальное или максимальное расстояние между телами (частицами) при движении, то это условие выполнится в тот момент времени, когда частицы движутся в одну сторону с одинаковой скоростью. Поэтому решение надо начинать с записи закона сохранения импульса, из которого и находится эта одинаковая скорость. А далее следует писать закон сохранения энергии с учетом кинетической энергии частиц во втором случае.

Потенциал. Разность потенциалов. Напряжение

Электростатическое поле обладает важным свойством: работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Следствием независимости работы от формы траектории является следующее утверждение: работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Свойство потенциальности (независимости работы от формы траектории) электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. А физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

какое взаимодействие существует между заряженными телами частицами

Во многих задачах электростатики при вычислении потенциалов за опорную точку, где значения потенциальной энергии и потенциала обращаются в ноль, удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом: потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Вспомнив формулу для потенциальной энергии взаимодействия двух точечных зарядов и разделив ее на величину одного из зарядов в соответствии с определением потенциала получим, что потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:

какое взаимодействие существует между заряженными телами частицами

Потенциал рассчитанный по этой формуле может быть положительным и отрицательным в зависимости от знака заряда создавшего его. Эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при rR (снаружи от шара или сферы), где R – радиус шара, а расстояние r отсчитывается от центра шара.

Для наглядного представления электрического поля наряду с силовыми линиями используют эквипотенциальные поверхности. Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала. Силовые линии электрического поля всегда перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы.

Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

какое взаимодействие существует между заряженными телами частицами

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

какое взаимодействие существует между заряженными телами частицами

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

какое взаимодействие существует между заряженными телами частицами

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

какое взаимодействие существует между заряженными телами частицами

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

какое взаимодействие существует между заряженными телами частицами

Во всех предыдущих формулах речь шла именно о работе электростатического поля, но если в задаче говорится, что «работу надо совершить», или идет речь о «работе внешних сил», то эту работу следует считать так же, как и работу поля, но с противоположным знаком.

Принцип суперпозиции потенциала

Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов (при этом знак потенциала поля зависит от знака заряда, создавшего поле):

какое взаимодействие существует между заряженными телами частицами

Обратите внимание, насколько легче применять принцип суперпозиции потенциала, чем напряженности. Потенциал – скалярная величина, не имеющая направления. Складывать потенциалы – это просто суммировать численные значения.

Электрическая емкость. Плоский конденсатор

При сообщении проводнику заряда всегда существует некоторый предел, более которого зарядить тело не удастся. Для характеристики способности тела накапливать электрический заряд вводят понятие электрической емкости. Емкостью уединенного проводника называют отношение его заряда к потенциалу:

какое взаимодействие существует между заряженными телами частицами

В системе СИ емкость измеряется в Фарадах [Ф]. 1 Фарад – чрезвычайно большая емкость. Для сравнения, емкость всего земного шара значительно меньше одного фарада. Емкость проводника не зависит ни от его заряда, ни от потенциала тела. Аналогично, плотность не зависит ни от массы, ни от объема тела. Емкость зависит лишь от формы тела, его размеров и свойств окружающей его среды.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

какое взаимодействие существует между заряженными телами частицами

Величина электроемкости проводников зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами.

Каждая из заряженных пластин плоского конденсатора создает вблизи своей поверхности электрическое поле, модуль напряженности которого выражается соотношением уже приводившимся выше. Тогда модуль напряженности итогового поля внутри конденсатора, создаваемого двумя пластинами, равен:

какое взаимодействие существует между заряженными телами частицами

За пределами конденсатора, электрические поля двух пластин направлены в разные стороны, и поэтому результирующее электростатическое поле E = 0. Электроёмкость плоского конденсатора может быть рассчитана по формуле:

какое взаимодействие существует между заряженными телами частицами

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Обратите внимание, что S в этой формуле есть площадь только одной обкладки конденсатора. Когда в задаче говорят о «площади обкладок», то имеют в виду именно эту величину. На 2 умножать или делить её не надо никогда.

Еще раз приведем формулу для заряда конденсатора. Под зарядом конденсатора понимают только заряд его положительной обкладки:

какое взаимодействие существует между заряженными телами частицами

Сила притяжения пластин конденсатора. Сила, действующая на каждую обкладку, определяется не полным полем конденсатора, а полем, созданным противоположной обкладкой (сама на себя обкладка не действует). Напряженность этого поля равна половине напряженности полного поля, и сила взаимодействия пластин:

какое взаимодействие существует между заряженными телами частицами

Энергия конденсатора. Ее же называют энергией электрического поля внутри конденсатора. Опыт показывает, что заряженный конденсатор содержит запас энергии. Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор. Существует три эквивалентные формы записи формулы для энергии конденсатора (они следуют одна из другой если воспользоваться соотношением q = CU):

какое взаимодействие существует между заряженными телами частицами

Особое внимание обращайте на фразу: «Конденсатор подключён к источнику». Это означает, что напряжение на конденсаторе не изменяется. А фраза «Конденсатор зарядили и отключили от источника» означает, что заряд конденсатора не изменится.

Энергия электрического поля

Электрическую энергию следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля. Энергия заряженных тел сосредоточена в пространстве, в котором есть электрическое поле, т.е. можно говорить об энергии электрического поля. Например, у конденсатора энергия сосредоточена в пространстве между его обкладками. Таким образом, имеет смысл ввести новую физическую характеристику – объёмную плотность энергии электрического поля. На примере плоского конденсатора, можно получить такую формулу для объёмной плотности энергии (или энергии единицы объёма электрического поля):

какое взаимодействие существует между заряженными телами частицами

Соединения конденсаторов

Параллельное соединение конденсаторов – для увеличения ёмкости. Конденсаторы соединены одноименно заряженными обкладками, как бы увеличивая площадь одинаково заряженных пластин. Напряжение на всех конденсаторах одинаковое, общий заряд равен сумме зарядов каждого из конденсаторов, и общая ёмкость также равна сумме емкостей всех конденсаторов соединенных параллельно. Выпишем формулы для параллельного соединения конденсаторов:

какое взаимодействие существует между заряженными телами частицами

При последовательном соединении конденсаторов общая ёмкость батареи конденсаторов всегда меньше, чем ёмкость наименьшего конденсатора, входящего в батарею. Применяется последовательное соединение для увеличения напряжения пробоя конденсаторов. Выпишем формулы для последовательного соединения конденсаторов. Общая емкость последовательно соединенных конденсаторов находится из соотношения:

какое взаимодействие существует между заряженными телами частицами

Из закона сохранения заряда следует, что заряды на соседних обкладках равны:

какое взаимодействие существует между заряженными телами частицами

Напряжение равно сумме напряжений на отдельных конденсаторах.

какое взаимодействие существует между заряженными телами частицами

Для двух последовательно соединённых конденсаторов формула выше даст нам следующее выражение для общей емкости:

какое взаимодействие существует между заряженными телами частицами

Для N одинаковых последовательно соединённых конденсаторов:

какое взаимодействие существует между заряженными телами частицами

Проводящая сфера

Напряженность поля внутри заряженного проводника равна нулю. В противном случае на свободные заряды внутри проводника действовала бы электрическая сила, которая вынуждала бы эти заряды двигаться внутри проводника. Это движение, в свою очередь, приводило бы к разогреванию заряженного проводника, чего на самом деле не происходит.

Факт того, что внутри проводника нет электрического поля можно понять и по-другому: если бы оно было то заряженные частицы опять таки двигались бы, причем они бы двигались именно так, чтобы свести это поле к нолю своим собственным полем, т.к. вообще-то двигаться им не хотелось бы, ведь всякая система стремится к равновесию. Рано или поздно все двигавшиеся заряды остановились бы именно в том месте, чтобы поле внутри проводника стало равно нолю.

На поверхности проводника напряжённость электрического поля максимальна. Величина напряжённости электрического поля заряженного шара за его пределами убывает по мере удаления от проводника и рассчитывается по формуле, аналогичной формулам для напряженности поля точечного заряда, в которой расстояния отсчитываются от центра шара.

Так как напряженность поля внутри заряженного проводника равна нулю, то потенциал во всех точках внутри и на поверхности проводника одинаков (только в этом случае разность потенциалов, а значит и напряжённость равна нулю). Потенциал внутри заряженного шара равен потенциалу на поверхности. Потенциал за пределами шара вычисляется по формуле, аналогичной формулам для потенциала точечного заряда, в которой расстояния отсчитываются от центра шара.

Электрическая емкость шара радиуса R:

какое взаимодействие существует между заряженными телами частицами

Если шар окружен диэлектриком, то:

какое взаимодействие существует между заряженными телами частицами

Свойства проводника в электрическом поле

Замечания к решению сложных задач

1. Заземление чего-либо означает соединение проводником данного объекта с Землей. При этом потенциалы Земли и имеющегося объекта выравниваются, а необходимые для этого заряды перебегают по проводнику с Земли на объект либо наоборот. При этом нужно учитывать несколько факторов, которые следуют из того, что Земля несоизмеримо больше любого объекта находящегося не ней:

2. Еще раз повторимся: расстояние между отталкивающимися телами минимально в тот момент, когда их скорости становятся равны по величине и направлены в одну сторону (относительная скорость зарядов равна нулю). В этот момент потенциальная энергия взаимодействия зарядов максимальна. Расстояние между притягивающимися телами максимально, также в момент равенства скоростей, направленных в одну сторону.

3. Если в задаче имеется система, состоящая из большого количества зарядов, то необходимо рассматривать и расписывать силы, действующие на заряд, который не находится в центре симметрии.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *