какое высказывание называется абсолютно ложным

Логические операции. ➞ Что такое конъюнкция, дизъюнкция, импликация

Тот, кто хочет подробно разбираться в цифровых технологиях должен понимать основы такой темы, как алгебра логики. В этой статье будут разобраны основные определения, а также показаны самые важные логические операции, такие как конъюнкция, дизъюнкция, импликация и т.д.

Основные положения

Для начала следует разобраться, для чего нужна алгебра логики – главным образом, этот раздел математики и информатики, нужен для работы с логическими выражениями и высказываниями.

Логическим высказыванием называется утверждение (или запись), которое мы можем однозначно классифицировать, как истинное или ложное (1 или 0 в информатике).

Примером таким высказываний будут являться:

Логические высказывания делятся на два типа — простые и сложные.

В алгебре логики, как простые, так и сложные высказываниями описываются булевыми выражениями.

Булево выражение – это символическое (знаковое) описание высказывания.

Операции

Ниже рассмотрим основные операции, которые применяются в булевой алгебре. Их хватит, чтобы упростить львиную долю всех выражений, которые Вам встретятся.

Конъюнкция

Конъюнкция (булево умножение) — функция, по своему смыслу приближенная к союзу «И». При выполнении конъюнкции результат истинен (равен 1) тогда и только тогда, когда истинны ВСЕ переменные. Если хотя бы одно из высказываний ложно, то ложно и всё выражение (равно 0).

Функция может работать как с двумя операндами (высказываниями), так и с тремя, четырьмя и т.д. В математике обозначается с помощью знаков ​\( \wedge \) и &. Обозначение в языках программирования AND, &&. Таблица истинности для двух операндов:

какое высказывание называется абсолютно ложным

Дизъюнкция

Дизъюнкцией называется функция булева сложения. По смыслу дизъюнкция приближена к союзу «ИЛИ». В результате выполнения данной функции результирующие выражение является истинным, когда хотя бы одно из высказываний в этом выражении тоже истинно.

Булево сложение, также как и умножение, может работать с произвольным количеством операндов. В математике обозначается как V, а в программировании с помощью OR или I.

какое высказывание называется абсолютно ложным

Инверсия

Логическое отрицание – функция, работающая с одним высказыванием, и заменяющая истину на ложь, а ложь на истину. В математике обозначается с помощью черты над значением, а в программирование и информатике с помощью слова NOT.

какое высказывание называется абсолютно ложным

Импликация

Также называется булевым следованием. В русском языке данной функции соответствует оборот «Если …, то …». Например, если на улице гремит, то стоит пасмурная погода.

какое высказывание называется абсолютно ложным

Эквивалентность

Булева тождественность или равенство. На простом языке будет обозначено как «… эквивалентно (равно) …». Результат будет истинным тогда, когда все значения в выражении будут иметь одинаковую истинность.

Обозначается с помощью трех черточек или ⟺.

какое высказывание называется абсолютно ложным

Порядок выполнения операций

Логические операции выполняются в следующем порядке:

Если в формуле указаны скобки, то порядок выполнения действий в скобках точно такой же, как написано выше.

Пример

Дано два отрезка B = [2,10], C = [6,14]. Из предложенных вариантов ответа выберите такой отрезок A, что формула \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) истинна при любом значении z. Варианты ответа:

Решение: Подставим в уравнение \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) =1 значения B и C и составим таблицу истинности:

Получившаяся формула \( ((z \in A) \Longrightarrow (z \in [2,10])) \vee (z \in [6,14])=1 \). По условию ​​​\( z \in A \)=1.

Таблица истинности для всех отрезков:

какое высказывание называется абсолютно ложным

Ответ: A = [3,11].

Заключение

Вот Вы и познакомились с основными логическими операциями и понятиями и знаете, что такое булево сложение и умножение. Если вас заинтересовала данная тема, то можете изучить булевы законы. Эти законы не проходятся в рамках школьной программы и служат для упрощения сложных выражений.

Источник

Информатика. 10 класс

Тезаурус

Алгебра логики — раздел математики, изучающий высказывания, рассматриваемые с точки зрения их логических значений (истинности или ложности), и логические операции над ними.

Логическое высказывание — это повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Высказывания, образованные из других высказываний, называются составными. Высказывание, никакая часть которого не является высказыванием, называется элементарным.

Логическая переменная — это переменная, которая обозначает любое высказывание и может принимать логические значения «истина» или «ложь».

Логическая операция полностью может быть описана таблицей истинности, указывающей, какие значения принимает составное высказывание при всех возможных значениях образующих его элементарных высказываний.

Инверсия — логическая операция, при которой высказыванию ставится в соответствие новое высказывание, значение которого противоположно исходному.

Конъюнкция — логическая операция, ставящая в соответствие двум высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба высказывания истинны.

Дизъюнкция — логическая операция, которая двум высказываниям ставит в соответствие новое высказывание, являющееся ложным тогда и только тогда, когда оба высказывания ложны.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся ложным тогда и только тогда, когда первое высказывание (посылка) истинно, а второе (следствие) — ложно, называется импликацией.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся истинным тогда и только тогда, когда только одно из двух высказываний истинно, называется строгой (исключающей) дизъюнкцией.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся истинным, когда оба исходных высказывания истинны или оба исходных высказывания ложны, называется эквиваленцией или равнозначностью.

При преобразовании или вычислении значения логического выражения логические операции выполняются в соответствии с их приоритетом:

Операции одного приоритета выполняются в порядке их следования, слева направо. Скобки меняют порядок выполнения операций.

Предикат — это утверждение, содержащее одну или несколько переменных. Из имеющихся предикатов с помощью логических операций можно строить новые предикаты.

Таблицу значений, которые принимает логическое выражение при всех сочетаниях значений входящих в него переменных, называют таблицей истинности логического выражения.

Истинность логического выражения можно доказать путем построения его таблицы истинности.

Функцию от n переменных, аргументы которой и сама функция принимают только два значения — 0 и 1, называют логической функцией. Таблица истинности может рассматриваться как способ задания логической функции.

Список литературы

Основная литература по теме урока:

— Л. Л.Босова, А. Ю.Босова. Информатика. Базовый уровень: учебник для 10 класса. — М.: БИНОМ. Лаборатория знаний, 2017 (с.174—197)

Дополнительная литература по теме урока:

— К. Ю.Поляков, Е. А.Еремин. Информатика углубленный уровень: учебник для 10 класса: часть 1. — М.: БИНОМ. Лаборатория знаний, 2013 (с.159—196)

Открытые электронные ресурсы по теме:

Источник

Какое высказывание называется абсолютно ложным

какое высказывание называется абсолютно ложным Тема 3. Основы математической логики 1. Логические выражения и логические операции.
2. Построение таблиц истинности и логических функций.
3. Законы логики и преобразование логических выражений.
Лабораторная работа № 3. Основы математической логики.

какое высказывание называется абсолютно ложным 1. Логические выражения и логические операции

Исследования в алгебре логики тесно связаны с изучением высказываний (хотя высказывание — предмет изучения формальной логики). Высказывание — это языковое образование, в отношении которого имеет смысл говорить о его истинности или ложности (Аристотель).

Простым высказыванием называют повествовательное предложение, относительно которого имеет смысл говорить, истинно оно или ложно.

Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.

Высказывания 1 и 3 являются истинными. Высказывание 2 – ложным , потому что число 27 составное 27=3*3*3.

Итак, отличительным признаком высказывания является свойство быть истинным или ложным, последние четыре предложения этим свойством не обладают.

С помощью высказываний устанавливаются свойства, взаимосвязи между объектами. Высказывание истинно, если оно адекватно отображает эту связь, в противном случае оно ложно.

Однако определение истинности высказывания далеко не простой вопрос. Например, высказывание «Число 1 +22 = 4294 967297 — простое», принадлежащее Ферма (1601-1665), долгое время считалось истинным, пока в 1732 году Эйлер (1707-1783) не доказал, что оно ложно. В целом, обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания «Сумма углов треугольника равна 180°» устанавливается геометрией, причем в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского — ложным.

В булевой алгебре простым высказываниям ставятся в соответствие логические переменные, значение которых равно 1, если высказывание истинно, и 0, если высказывание ложно. Обозначаются логические переменные, большими буквами латинского алфавита.

Существуют разные варианты обозначения истинности и ложности логических переменных:

Сложные (составные) высказывания представляют собой набор простых высказываний (по крайней мере двух) связанных логическими операциями.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Связки «НЕ», «И», «ИЛИ» заменяются логическими операциями инверсия, конъюнкция, дизъюнкция. Это основные логические операции, при помощи которых можно записать любое логическое выражение.

Введем перечисленные логические операции.

В алгебре множеств конъюнкции соответствует операция пересечения множеств, т.е. множеству получившемуся в результате умножения множеств А и В соответствует множество, состоящее из элементов, принадлежащих одновременно двум множествам.

Источник

MT1102: Линейная алгебра (введение в математику)

Определение высказываний

Высказывание — утверждение, относительно которого можно сказать истинно (1, истина, true) оно или ложно (0, ложь, false).

Примеры

Следующие предложения являются высказываниями:

%%A_1%%: «Лондон — столица Австрии».
%%A_2%%: «Число 8 больше числа 3».
%%A_3%%: «Число 8 больше числа 13».
%%A_4%%: «Луна — спутник планеты Земля».

Причем высказывания %%A_1, A_3%% — ложные, а %%A_2, A_4%% — истинные.

Следующие предложения не являются высказываниями:

%%B_1%%: «Какой сегодня день недели?».
%%B_2%%: «%%2 + 3%%».
%%B_3%%: «Число %%x%% больше 3».

Мы не можем сказать о любом из высказываний %%B_1, B_2, B_3%% истинно оно или ложно. Например, в предложении %%B_3%% буква %%x%% — переменная. Если поставить какое либо значение вместо нее, например 8, то получим истинное высказывание.

Операции над высказываниями

Пусть %%A%% и %%B%% — некоторые высказывания.

Конъюнкция

Конъюнкцией высказываний %%A%% и %%B%%

называется новое высказывание, обозначаемое %%A \land B%%, которое является истинным тогда и только тогда, когда высказывания %%A%% и %%B%% истины. Читается как %%A%% и %%B%%.

Рассмотрим конъюнкцию высказывний %%A_1%% и %%A_2%%, которая записывается как %%A_1 \land A_2%% и читается как «Генуя — столица Австрии и число 8 больше числа 3». Это высказывание ложно, так как высказывание %%A_1%% ложно. Другими словами, конъюнкция является ложной тогда и только тогда, когда хотя бы одно из высказываний ложно.

Рассмотрим произвольные высказывания %%A%% и %%B%% и полученное из них высказывание %%A \land B%%. Высказывания %%A, B%% могут быть как ложными, так и истинными. Возможны следующие варианты:

В каждом их этих случаев, вычислив значение конъюнкции высказываний %%A \land B%%, получим следующую таблицу, которая называется таблицей истинности.

%%A%%%%B%%%%A \land B%%
%%0%%%%0%%%%0%%
%%0%%%%1%%%%0%%
%%1%%%%0%%%%0%%
%%1%%%%1%%%%1%%

Где %%1%% обозначает истинное высказывание, %%0%% — ложное высказывание.

Дизъюнкция

Дизъюнкцией высказываний %%A%% и %%B%%

называется новое высказывание, обозначаемое %%A \lor B%%, которое является ложным тогда и только тогда, когда высказывания %%A%% и %%B%% ложны. Читается как %%A%% или %%B%%.

Рассмотрим дизъюнкцию высказывний %%A_1%% и %%A_2%%, которая записывается как %%A_1 \lor A_2%% и читается как «Москва — столица Австрии или число 8 больше числа 3». Это высказывание истинно, так как высказывание %%A_2%% истинно. Другими словами, дизъюнкция является истинной тогда и только тогда, когда хотя бы одно из высказываний истино.

Таблица истинности для дизъюнкции выглядит следующим образом.

%%A%%%%B%%%%A \lor B%%
%%0%%%%0%%%%0%%
%%0%%%%1%%%%1%%
%%1%%%%0%%%%1%%
%%1%%%%1%%%%1%%

Импликация

Импликацией высказываний %%A%% и %%B%% называется

новое высказывание, обозначаемое %%A \rightarrow B%%, которое является ложным тогда и только тогда, когда высказывание %%A%% истинно, %%B%% ложно. Читается как: «Если %%A%%, то %%B%%»; «%%A%% влечет %%B%%»; «из %%A%% следует %%B%%»; «%%A%% достаточно для %%B%%»; %%B%% необходимо для %%A%%».

Рассмотрим импликацию высказывний %%A_2%% и %%A_1%%, которая записывается как %%A_2 \rightarrow A_1%% и читается как «Если число %%8%% больше числа %%3%%, то Москва — столица Австрии». Это высказывание ложно, так как высказывание %%A_2%% истинно, а %%A_1%% ложно.

Таблица истинности для импликации выглядит следующим образом.

%%A%%%%B%%%%A \rightarrow B%%
%%0%%%%0%%%%1%%
%%0%%%%1%%%%1%%
%%1%%%%0%%%%0%%
%%1%%%%1%%%%1%%

Эквиваленция

Эквиваленцией высказываний %%A%% и %%B%%

называется новое высказывание, обозначаемое %%A \leftrightarrow B%%, которое является истинным тогда и только тогда, когда высказывание %%A%% и %%B%% одновременно истинны или ложны. Читается как: «%%A%% равносильно %%B%%»; «%%A%% необходимо и достаточно для %%B%%»; «%%A%% тогда и только тогда, когда %%B%%».

Рассмотрим импликацию высказывний %%A_1%% и %%A_2%%, которая записывается как %%A_1 \leftrightarrow A_2%% и читается как «Москва — столица Австрии тогда и только тогда, когда число %%8%% больше числа %%3%%». Это высказывание ложно, так как высказывание %%A_2%% истинно, а %%A_1%% ложно.

Таблица истинности для эквиваленции выглядит следующим образом.

%%A%%%%B%%%%A \leftrightarrow B%%
%%0%%%%0%%%%1%%
%%0%%%%1%%%%0%%
%%1%%%%0%%%%0%%
%%1%%%%1%%%%1%%

Также эквиваленцию можно выразить через импликацию и конъюнкцию, тогда

Покажем это, используя таблицы истинности.

%%A%%%%B%%%%A \leftrightarrow B%%%%A \rightarrow B%%%%B \rightarrow A%%%%(A \rightarrow B) \land (B \rightarrow A)%%
%%0%%%%0%%%%1%%%%1%%%%1%%%%1%%
%%0%%%%1%%%%0%%%%1%%%%0%%%%0%%
%%1%%%%0%%%%0%%%%0%%%%1%%%%0%%
%%1%%%%1%%%%1%%%%1%%%%1%%%%1%%

Как видно из таблицы истинности столбцы %%A \leftrightarrow B%% и %%(A \rightarrow B) \land (B \rightarrow A)%% имеют одни и те же значения при одинаковых наборах значений %%A%% и %%B%%, что говорит о равенстве этих двух формул.

Отрицание

Отрицанием высказывания %%A%%

Рассмотрим отрицание высказывния %%A_1%%, которое записывается как %%\overline%% и читается как «неверно, что Москва — столица Австрии». Это высказывание истинно, так как высказывание %%A_1%% ложно.

Таблица истинности для отрицания выглядит следующим образом.

Источник

Логические выражения

Теория к заданию 23 из ЕГЭ по информатике

Алгебра логики

Алгебра логики

Алгебра логики (англ. algebra of logic) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.

Основоположником алгебры логики является английский математик и логик Дж. Буль (1815–1864), положивший в основу своего логического учения аналогию между алгеброй и логикой. Любое высказывание он записывал с помощью символов разработанного им языка и получал «уравнения», истинность или ложность которых можно было доказать, исходя из определенных логических законов, таких как законы коммутативности, дистрибутивности, ассоциативности и др.

Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.

Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.

Например, «3 умножить на 3 равно 9», «Архангельск севернее Вологды» — истинные высказывания, а «Пять меньше трех», «Марс — звезда» — ложные.

Очевидно, что не всякое предложение может быть логическим высказыванием, т. к. не всегда есть смысл говорить о его ложности или истинности. Например, высказывание «Информатика — интересный предмет» неопределенно и требует дополнительных сведений, а высказывание «Для ученика 10-А класса Иванова А. А. информатика — интересный предмет» в зависимости от интересов Иванова А. А. может принимать значение «истина» или «ложь».

Кроме двузначной алгебры высказываний, в которой принимаются только два значения — «истинно» и «ложно», существует многозначная алгебра высказываний. В такой алгебре, кроме значений «истинно» и «ложно», употребляются такие истинностные значения, как «вероятно», «возможно», «невозможно» и т. д.

В алгебре логики различаются простые (элементарные) высказывания, обозначаемые латинскими буквами (A, B, C, D, …), и сложные (составные), составленные из нескольких простых с помощью логических связок, например таких, как «не», «и», «или», «тогда и только тогда», «если … то». Истинность или ложность получаемых таким образом сложных высказываний определяется значением простых высказываний.

Обозначим как А высказывание «Алгебра логики успешно применяется в теории электрических схем», а через В — «Алгебра логики применяется при синтезе релейно-контактных схем».

Тогда составное высказывание «Алгебра логики успешно применяется в теории электрических цепей и при синтезе релейно-контактных схем» можно кратко записать как А и В; здесь «и» — логическая связка. Очевидно, что поскольку элементарные высказывания А и В истинны, то истинно и составное высказывание А и В.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.

Логических значений всего два: истина (TRUE) и ложь (FALSE). Это соответствует цифровому представлению — 1 и 0. Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.

Основные операции алгебры логики

1. Логическое отрицание, инверсия (лат. inversion — переворачивание) — логическая операция, в результате которой из данного высказывания (например, А) получается новое высказывание (не А), которое называется отрицанием исходного высказывания, обозначается символически чертой сверху ($A↖<->$) или такими условными обозначениями, как ¬, ‘not’, и читается: «не А», «А ложно», «неверно, что А», «отрицание А». Например, «Марс — планета Солнечной системы» (высказывание А); «Марс — не планета Солнечной системы» ($A↖<->$); высказывание «10 — простое число» (высказывание В) ложно; высказывание «10 — не простое число» (высказывание B ) истинно.

Операция, используемая относительно одной величины, называется унарной. Таблица значений данной операции имеет вид

A¬A
истиналожь
ложьистина

какое высказывание называется абсолютно ложным

2. Конъюнкция (лат. conjunctio — соединение) — логическое умножение, операция, требующая как минимум двух логических величин (операндов) и соединяющая два или более высказываний при помощи связки «и» (например, «А и В»), которая символически обозначается с помощью знака ∧ (А ∧ В) и читается: «А и В». Для обозначения конъюнкции применяются также следующие знаки: А ∙ В; А & В, А and В, а иногда между высказываниями не ставится никакого знака: АВ. Пример логического умножения: «Этот треугольник равнобедренный и прямоугольный». Данное высказывание может быть истинным только в том случае, если выполняются оба условия, в противном случае высказывание ложно.

Таблица истинности операции имеет вид

ABA ∧ B
истиналожьложь
ложьистиналожь
ложьложьложь
истинаистинаистина
ABA ∧ B
100
010
000
111

Высказывание АВ истинно только тогда, когда оба высказывания — А и В истинны.

Геометрически конъюнкцию можно представить следующим образом: если А, В — это некоторые множества точек, то АВ есть пересечение множеств А и В.

какое высказывание называется абсолютно ложным

3. Дизъюнкция (лат. disjunction — разделение) — логическое сложение, операция, соединяющая два или более высказываний при помощи связки «или» (например, «А или В»), которая символически обозначается с помощью знака ∨ В) и читается: «А или В». Для обозначения дизъюнкции применяются также следующие знаки: А + В; А or В; А | B. Пример логического сложения: «Число x делится на 3 или на 5». Это высказывание будет истинным, если выполняются оба условия или хотя бы одно из условий.

Таблица истинности операции имеет вид

ABAB
истиналожьистина
ложьистинаистина
ложьложьложь
истинаистинаистина
ABAB
101
011
000
111

Высказывание АВ ложно только тогда, когда оба высказывания — А и В ложны.

Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то АВ — это объединение множеств А и В, т. е. фигура, объединяющая и квадрат, и круг.

какое высказывание называется абсолютно ложным

4. Дизъюнкция строго-разделительная, сложение по модулю два — логическая операция, соединяющая два высказывания при помощи связки «или», употребленной в исключающем смысле, которая символически обозначается с помощью знаков ∨ ∨ или ⊕ (А ∨ ∨ В, АВ) и читается: «либо А, либо В». Пример сложения по модулю два — высказывание «Этот треугольник тупоугольный или остроугольный». Высказывание истинно, если выполняется какое-то одно из условий.

Таблица истинности операции имеет вид

АВАB
истиналожьистина
ложьистинаистина
ложьложьложь
истинаистиналожь
АВАB
101
011
000
110

Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.

5. Импликация (лат. implisito — тесно связываю) — логическая операция, соединяющая два высказывания при помощи связки «если. то» в сложное высказывание, которое символически обозначается с помощью знака → (АВ) и читается: «если А, то В», «А влечет В», «из А следует В», «А имплицирует В». Для обозначения импликации применяется также знак ⊃ (A ⊃ B). Пример импликации: «Если полученный четырехугольник квадрат, то около него можно описать окружность». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием. Результат операции ложен только тогда, когда предпосылка есть истина, а следствие — ложь. Например, «Если 3 * 3 = 9 (А), то Солнце — планета (В)», результат импликации А → В — ложь.

Таблица истинности операции имеет вид

АВАВ
истиналожьложь
ложьистинаистина
ложьложьистина
истинаистинаистина
АВАВ
100
011
001
111

Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.

6. Эквивалентность, двойная импликация, равнозначность (лат. aequalis — равный и valentis — имеющий силу) — логическая операция, позволяющая из двух высказываний А и В получить новое высказывание А ≡ В, которое читается: «А эквивалентно B». Для обозначения эквивалентности применяются также следующие знаки: ⇔, ∼. Эта операция может быть выражена связками «тогда и только тогда», «необходимо и достаточно», «равносильно». Примером эквивалентности является высказывание: «Треугольник будет прямоугольным тогда и только тогда, когда один из углов равен 90 градусам».

Таблица истинности операции эквивалентности имеет вид

АВАВ
истиналожьложь
ложьистиналожь
ложьложьистина
истинаистинаистина
АВАВ
100
010
001
111

Операция эквивалентности противоположна сложению по модулю два и имеет результат «истина» тогда и только тогда, когда значения переменных совпадают.

Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.

Сложение по модулю дваА ⊕ В$(A↖ <->∧B) ∧ (A ∧ B↖<->)$
ИмпликацияА → В$A↖ <->∨ B$
ЭквивалентностьА ∼ В$(A↖ <->∧ B↖<->) ∨ (A ∧ B)$

Приоритет выполнения логических операций следующий: отрицание («не») имеет самый высокий приоритет, затем выполняется конъюнкция («и»), после конъюнкции — дизъюнкция («или»).

С помощью логических переменных и логических операций любое логическое высказывание можно формализовать, т. е. заменить логической формулой. При этом элементарные высказывания, образующие составное высказывание, могут быть абсолютно не связаны по смыслу, но это не мешает определять истинность или ложность составного высказывания. Например, высказывание «Если пять больше двух (А), то вторник всегда наступает после понедельника (В)» — импликация АВ, и результат операции в данном случае — «истина». В логических операциях смысл высказываний не учитывается, рассматривается только их истинность или ложность.

Рассмотрим, например, построение составного высказывания из высказываний А и В, которое было бы ложно тогда и только тогда, когда оба высказывания истинны. В таблице истинности для операции сложения по модулю два находим: 1 ⊕ 1 = 0. А высказывание может быть, например, таким: «Этот мяч полностью красный или полностью синий». Следовательно, если утверждение А «Этот мяч полностью красный» — истина, и утверждение В «Этот мяч полностью синий» — истина, то составное утверждение — ложь, т. к. одновременно и красным, и синим мяч быть не может.

Примеры решения задач

Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.

Решение. Рассмотрим последовательно все предложенные слова:

1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;

4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;

5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.

Логические выражения и их преобразование

Под логическим выражением следует понимать такую запись, которая может принимать логическое значение «истина» или «ложь». При таком определении среди логических выражений необходимо различать:

Логические выражения могут включать в себя функции, алгебраические операции, операции сравнения и логические операции. В этом случае приоритет выполнения действий следующий:

В логическом выражении могут использоваться скобки, которые изменяют порядок выполнения операций.

Пример. Найти значение выражения:

Решение. Порядок подсчета значений:

1) b a + a b > a + b, после подстановки получим: 3 2 + 2 3 > 2 + 3, т. е. 17 > 2 + 3 = истина;

2) A ∧ B = истина ∧ ложь = ложь.

Следовательно, выражение в скобках равно (b a + a b > a + b ∨ A ∧ B) = истина ∨ ложь = истина;

3) 1≤ a = 1 ≤ 2 = истина;

Из логических элементов составляются электронные логические схемы, выполняющие более сложные логические операции. Набор логических элементов, состоящий из элементов НЕ, ИЛИ, И, с помощью которых можно построить логическую структуру любой сложности, называется функционально полным.

Построение таблиц истинности логических выражений

Для логической формулы всегда можно записать таблицу истинности, т. е. представить заданную логическую функцию в табличном виде. В этом случае таблица должна содержать все возможные комбинации аргументов функции (формулы) и соответствующие значения функции (результаты формулы на заданном наборе значений).

Если функция принимает значение 1 при всех наборах значений переменных, она является тождественно-истинной; если при всех наборах входных значений функция принимает значение 0, она является тождественно-ложной; если набор выходных значений содержит как 0, так и 1, функция называется выполнимой. Приведенный выше пример является примером тождественно-истинной функции.

Зная аналитическую форму логической функции, всегда можно перейти к табличной форме логических функций. С помощью заданной таблицы истинности можно решить обратную задачу, а именно: для заданной таблицы построить аналитическую формулу логической функции. Различают две формы построения аналитической зависимости логической функции по таблично заданной функции.

1. Дизъюнктивно нормальная форма (ДНФ) — сумма произведений, образованных из переменных и их отрицаний для ложных значений.

Алгоритм построения ДНФ следующий:

Пример. Построить функцию, определяющую, что первое число равно второму, используя метод ДНФ. Таблица истинности функции имеет вид

X1X2F(X1, X2)
111
010
100
001

Решение. Выбираем наборы значений аргументов, в которых функция равна 1. Это первая и четвертая строки таблицы (строку заголовка при нумерации не учитываем).

2. Конъюнктивно нормальная форма (КНФ) — произведение сумм, образованных из переменных и их отрицаний для истинных значений.

Алгоритм построения КНФ следующий:

Примеры решения задач

Пример 1. Рассмотрим предыдущий пример, т. е. построим функцию, определяющую, что первое число равно второму, используя метод КНФ. Для заданной функции ее таблица истинности имеет вид

X1X2F(X1, X2)
111
010
100
001

Решение. Выбираем наборы значений аргументов, в которых функция равна 0. Это вторая и третья строки (строку заголовка при нумерации не учитываем).

Таким образом, получена запись логической функции в КНФ.

Пример 2. Построить логическую функцию для заданной таблицы истинности:

X1X2F(X1, X2)
111
100
011
000

Решение. Используем алгоритм ДНФ для построения исходной функции:

X1X2F(X1, X2)
111X1 ∧ X2
100
011$↖<->$ ∧ X2
000

Пример 3. Для приведенной таблицы истинности построить логическую функцию, используя метод ДНФ.

Формула достаточно громоздка, и ее следует упростить:

Таблицы истинности для решения логических задач

Составление таблиц истинности — один из способов решения логических задач. При использовании такого способа решения, условия, которые содержит задача, фиксируются с помощью специально составленных таблиц.

Примеры решения задач

Пример 1. Составить таблицу истинности для охранного устройства, которое использует три датчика и срабатывает при замыкании только двух из них.

Решение. Очевидно, что результатом решения будет таблица, в которой искомая функция Y(X1, X2, X3) будет иметь значение «истина», если какие-либо две переменные имеют значение «истина».

X1X2X3Y(X1, X2, X3)
1110
1101
1011
1000
0111
0100
0010
0000

Пример 2. Составить расписание уроков на день, учитывая, что урок информатики может быть только первым или вторым, урок математики — первым или третьим, а физики — вторым или третьим. Возможно ли составить расписание, удовлетворив всем требованиям? Сколько существует вариантов расписания?

Решение. Задача легко решается, если составить соответствующую таблицу:

1-й урок2-й урок3-й урок
Информатика110
Математика101
Физика011

Из таблицы видно, что существуют два варианта искомого расписания:

Пример 3. В спортивный лагерь приехали трое друзей — Петр, Борис и Алексей. Каждый из них увлекается двумя видами спорта. Известно, что таких видов спорта шесть: футбол, хоккей, лыжи, плавание, теннис, бадминтон. Также известно, что:

Какими видами спорта увлекается каждый из мальчиков?

Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

Так как видов спорта шесть, получается, что все мальчики увлекаются разными видами спорта.

Из условия 4 следует, что Борис не увлекается ни лыжами, ни теннисом, а из условий 3 и 5, что Петр не умеет играть в футбол, хоккей, теннис и бадминтон. Следовательно, любимые виды спорта Петра — лыжи и плавание. Занесем это в таблицу, а оставшиеся клетки столбцов «Лыжи» и «Плавание» заполним нулями.

ФутболХоккейЛыжиПлаваниеБадминтонТеннис
Петр001100
Борис000
Алексей00

Из таблицы видно, что в теннис может играть только Алексей.

Из условий 1 и 2 следует, что Борис не футболист. Таким образом, в футбол играет Алексей. Продолжим заполнять таблицу. Внесем в пустые ячейки строки «Алексей» нули.

ФутболХоккейЛыжиПлаваниеБадминтонТеннис
Петр001100
Борис0000
Алексей100001

Окончательно получаем, что Борис увлекается хоккеем и бадминтоном. Итоговая таблица будет выглядеть следующим образом:

ФутболХоккейЛыжиПлаваниеБадминтонТеннис
Петр001100
Борис010010
Алексей100001

Ответ: Петр увлекается лыжами и плаванием, Борис играет в хоккей и бадминтон, а Алексей занимается футболом и теннисом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *