какое топливо используется на атомных электростанциях

Добыча, переработка, использование и хранение ядерного топлива

Ядерное топливо — это вещество способное выделять энергию в реакторе поддерживая ядерную цепную реакцию.

Все процессы, вовлеченные в получение, очистку и использование этого ядерного топлива, составляют цикл, известный как топливный цикл.

Наиболее распространенными видами ядерного топлива являются радиоактивные металлы уран-235 и плутоний-239.

Уран в качестве основного ядерного топлива

Уран является относительно распространенным элементом, который встречается во всем мире. Он добывается в ряде стран и должен быть переработан, прежде чем его можно будет использовать в качестве ядерного топлива и использования энергии ядерной реакции.

Уран-235 используется в качестве источника энергии в различных концентрациях. Некоторые реакторы, такие как тяжеловодный водо-водяной, могут использовать природный уран с концентрацией урана-235 всего 0,7%, в то время как другие реакторы требуют более значительного обогащения урана до уровней от 3% до 5%. Природный уран является слегка радиоактивным металлом, который встречается по всей земной коре. Он примерно в 500 раз более распространен, чем золото, и примерно так же распространен, как олово. Он присутствует в большинстве пород и почв, а также во многих реках и в морской воде. Природный уран, например, содержится в концентрации около четырех частей на миллион в граните, что составляет 60% земной коры. В удобрениях концентрация урана может достигать 0,04%, а некоторые угольные месторождения содержат металл в концентрациях более 0,01%. Большая часть радиоактивности, связанной с ураном в природе, на самом деле обусловлена другими минералами, полученными из него в результате процессов радиоактивного распада, и которые остаются в добыче и измельчении.

Во всем мире существует ряд областей, где концентрация урана в земле достаточно высока, что добыча его для использования в качестве ядерного топлива экономически целесообразна. Такие концентрации называются рудными.

Добыча урана

Для извлечения урановой руды используются как подземные так открытые методы раскопок. Карьерные шахты требуют больших свободных территорий на поверхности, чем размер рудного месторождения, так как стены карьера должны быть наклонными, чтобы предотвратить обрушение. В результате количество материала, которое должно быть удалено для доступа к руде, может быть большим. какое топливо используется на атомных электростанциях Подземные шахты имеют относительно небольшие территории, и количество материала, которое должно быть удалено для доступа к руде, значительно меньше, чем в случае открытой шахты. В подземных шахтах для защиты от воздействия радиации в воздухе требуются особые меры предосторожности, в первую очередь повышенная вентиляция.

Решение о том, какой способ разработки использовать для конкретного месторождения, определяется характером рудного тела, безопасностью и экономическими соображениями.

Плутоний

Плутоний-239 производится и используется в реакторах размножителях на быстрых нейтронах, которые содержат значительные количества урана-238. Его можно также рециркулировать и использовать как вещество способное выделять энергию в термальных реакторах. Вещество имеет большую активность чем уран.

Плутоний-238 применяется в малогабаритных радиоизотопных источниках энергии.

какое топливо используется на атомных электростанциях

Торий

В настоящее время проводятся исследования по использованию тория-232 в качестве источника.

Тория на Земле больше чем урана, он менее токсичен и не образовывает долгоживущие радиоактивные изотопы.

Производство ядерного топлива

Смешанное оксидное топливо также может быть создано, когда порошок упакован вместе с оксидом плутония. Опасности, существующие на объектах по изготовлению топлива, главным образом химические и радиологические, аналогичны опасностям на обогатительных фабриках. Эти объекты, как правило, представляют низкий риск для общественности.

Использование

При использовании вещества способные выделять энергию могут иметь множество различных форм металла, сплава или какого-то оксида.

Топливные стержни

Ядерные реакторы работают на порошкообразном диоксиде урана, который был сжат в небольшие гранулы. Для получения большого количества гранул они связываются в топливный стержень.какое топливо используется на атомных электростанциях

Одна урановая топливная таблетка размером с кончик пальца может выдать энергии как 481 кубический метр природного газа, 807 килограммов угля или 564 литра нефти. Стержни состоят из многочисленных гранул радиоактивного уранового топлива.

Они могут быть несколько метров в длину и около сантиметра в диаметре. Несколько таких стержней, обычно больше десяти, удерживаются вместе прочными металлическими кронштейнами в тепловыделяющей сборке. Эти штанги между собой имеют зазоры несколько миллиметров между каждой штангой для того, чтобы позволить хладоагенту проходить между ними. Трубки, содержащие гранулы урана, обычно состоят из циркония.

Преимущества и недостатки ядерного топлива

Ряд стран проводят исследования для определения оптимального подхода к удалению отработавшего топлива и отходов переработки. Общее согласие одобряет его размещение в глубоких геологических хранилищах, приблизительно на 500 метров ниже, первоначально извлекаемых, прежде чем быть навсегда запечатанным.

Источник

Ядерное топливо: от руды до утилизации

какое топливо используется на атомных электростанциях

Жизненный цикл ядерного топлива на основе урана или плутония начинается на добывающих предприятиях, химических комбинатах, в газовых центрифугах, и не заканчивается в момент выгрузки тепловыделяющей сборки из реактора, поскольку каждой ТВС предстоит пройти долгий путь утилизации, а затем и переработки.

Добыча сырья для ядерного топлива

Уран — самый тяжёлый металл на земле. Около 99,4% земного урана приходится на уран-238, и всего 0,6% — на уран-235. В докладе Международного агентства по атомной энергии под названием «Красная книга» содержатся данные о росте объёмов добычи и спроса на уран, несмотря на аварию на АЭС «Фукусима-1», которая заставила многих задуматься о перспективах ядерной энергетики. Только за последние несколько лет разведанные запасы урана выросли на 7%, что связано с открытием новых месторождений. Самыми крупными производителями остаются Казахстан, Канада и Австралия, они добывают до 63% мирового урана. Кроме этого запасы металла имеются в Австралии, Бразилии, Китае, Малави, России, Нигере, США, Украине, КНР и других странах. Ранее Пронедра писали, что за 2016 год в РФ было добыто 7,9 тысячи тонн урана.

В наши дни уран добывают тремя разными способами. Не теряет своей актуальности открытый метод. Он используется в тех случаях, когда залежи находятся близко к поверхности земли. При открытом способе бульдозеры создают карьер, затем руда с примесями грузится в самосвалы для транспортировки на перерабатывающие комплексы.

Часто рудное тело залегает на большой глубине, в таком случае используется подземный способ добычи. Вырывается шахта глубиной до двух километров, породу, путём сверления, добывают в горизонтальных штреках, перевозят наверх в грузовых лифтах.

Смесь, которая таким образом вывозится наверх, имеет множество составляющих. Породу необходимо измельчить, разбавить водой и удалить лишнее. Далее в смесь добавляют серную кислоту для проведения процесса выщелачивания. В ходе этой реакции химики получают осадок солей урана жёлтого цвета. Наконец, уран с примесями очищается на аффинажном производстве. Только после этого получается закись-окись урана, которой и торгуют на бирже.

Есть гораздо более безопасный, экологически чистый и экономически выгодный способ, который называют скважинным подземным выщелачиванием (СПВ).

При этом методе разработки месторождений территория остаётся безопасной для персонала, а радиационный фон соответствует фону в крупных городах. Чтобы добыть уран с помощью выщелачивания, необходимо пробурить 6 скважин по углам шестиугольника. Через эти скважины в залежи урана закачивают серную кислоту, она смешивается с его солями. Этот раствор добывают, а именно выкачивают через скважину в центре шестиугольника. Чтобы добиться нужной концентрации солей урана, смесь по нескольку раз пропускают через сорбционные колонны.

Производство ядерного топлива

Производство ядерного топлива невозможно представить без газовых центрифуг, которые используются для получения обогащённого урана. После достижения необходимой концентрации из диоксида урана прессуют так называемые таблетки. Их создают при помощи смазочных материалов, которые удаляются во время обжига в печах. Температура обжига достигает 1000 градусов. После этого таблетки проверяются на соответствие заявленным требованиям. Имеют значение качество поверхности, содержание влаги, соотношение кислорода и урана.

В это же время в другом цехе готовят трубчатые оболочки для тепловыделяющих элементов. Вышеназванные процессы, включая последующие дозировку и упаковку таблеток в оболочечные трубки, герметизацию, дезактивацию, называются фабрикацией топлива. В России созданием тепловыделяющих сборок (ТВС) занимаются предприятия «Машиностроительный завод» в Московской области, «Новосибирский завод химконцентратов» в Новосибирске, «Московский завод полиметаллов» и другие.

Каждая партия топливных сборок создаётся под реактор конкретного типа. Европейские ТВС делаются в форме квадрата, а российские — с шестиугольным сечением. В РФ широко распространены реакторы типа ВВЭР-440 и ВВЭР-1000. Первые ТВЭЛы для ВВЭР-440 начали разрабатываться с 1963 года, а для ВВЭР-1000 — с 1978 года. Несмотря на то что в России активно внедряются новые реакторы с постфукусимскими технологиями безопасности, по стране и за её пределами функционирует много ядерных установок старого образца, поэтому одинаково актуальными остаются топливные сборки для разных типов реакторов.

Например, для обеспечения тепловыделяющими сборками одной активной зоны реактора РБМК-1000 необходимо свыше 200 тысяч комплектующих деталей из циркониевых сплавов, а также 14 млн спечённых таблеток из диоксида урана. Иногда стоимость изготовления топливной сборки может превосходить стоимость содержащегося в элементах топлива, поэтому так важно обеспечить высокую энергоотдачу с каждого килограмма урана.

Затраты на производственные процессы в %

Создание тепловыделяющей сборки с ядерным топливом
Изготовление порошка UO24,8%
Производство спрессованных таблеток8,2%
Подготовка стержней для ТВС9,8%
Загрузка топливных таблеток в стержни3,7%
Контрольные операции, анализы8,4%
Утилизация отходов, потери урана6,4%
Конструкционные материалы (оболочки, сборные детали)50%
Амортизация8,7%

Отдельно стоит сказать о топливных сборках для исследовательских реакторов. Они конструируются таким образом, чтобы сделать наблюдение и изучение процесса генерации нейтронов максимально комфортным. Такие ТВЭЛы для экспериментов в сферах ядерной физики, наработки изотопов, радиационной медицины в России производит «Новосибирский завод химических концентратов». ТВС создаются на основе бесшовных элементов с ураном и алюминием.

Производством ядерного топлива в РФ занимается топливная компания ТВЭЛ (подразделение «Росатома»). Предприятие работает над обогащением сырья, сборкой тепловыделяющих элементов, а также предоставляет услуги по лицензированию топлива. «Ковровский механический завод» во Владимирской области и «Уральский завод газовых центрифуг» в Свердловской области создают оборудование для российских ТВС.

Особенности транспортировки ТВЭЛов

Природный уран характеризуются низким уровнем радиоактивности, однако перед производством ТВС металл проходит процедуру обогащения. Содержание урана-235 в природной руде не превышает 0,7%, а радиоактивность составляет 25 беккерелей на 1 миллиграмм урана.

В урановых таблетках, которые помещаются в ТВС, находится уран с концентрацией урана-235 5%. Готовые ТВС с ядерным топливом перевозятся в специальных металлических контейнерах высокой прочности. Для транспортировки используется железнодорожный, автомобильный, морской и даже воздушный транспорт. В каждом контейнере размещают по две сборки. Перевозка не облучённого (свежего) топлива не представляет радиационной опасности, поскольку излучение не выходит за пределы циркониевых трубок, в которые помещаются прессованные таблетки из урана.

Для партии топлива разрабатывается специальный маршрут, груз перевозится в сопровождении охранного персонала производителя или заказчика (чаще), что связано прежде всего с дороговизной оборудования. За всю историю производства ядерного топлива не было зафиксировано ни одной транспортной аварии с участием ТВС, которая бы повлияла на радиационный фон окружающей среды или привела к жертвам.

Топливо в активной зоне реактора

Единица ядерного топлива — ТВЭЛ — способна выделять на протяжении долгого времени огромное количество энергии. С такими объёмами не сравнится ни уголь, ни газ. Жизненный цикл топлива на любой АЭС начинается с выгрузки, выемки и хранения на складе ТВС свежего топлива. Когда предыдущая партия топлива в реакторе выгорает, персонал комплектует ТВС для загрузки в активную зону (рабочую зону реактора, где происходит реакция распада). Как правило, топливо перезагружается частично.

Полностью топливо закладывается в активную зону только в момент первого запуска реактора. Это связано с тем, что ТВЭЛы в реакторе выгорают неравномерно, поскольку нейтронный поток различается по интенсивности в разных зонах реактора. Благодаря учётным приборам, персонал станции имеет возможность в режиме реального времени следить за степенью выгорания каждой единицы топлива и производить замену. Иногда вместо загрузки новых ТВС, сборки перемещаются между собой. В центре активной зоны выгорание происходит интенсивнее всего.

ТВС после атомной станции

Уран, который отработал в ядерном реакторе, называется облучённым или выгоревшим. А такие ТВС — отработавшим ядерным топливом. ОЯТ позиционируется отдельно от радиоактивных отходов, поскольку имеет как минимум 2 полезных компонента — это невыгоревший уран (глубина выгорания металла никогда не достигает 100%) и трансурановые радионуклиды.

В последнее время физики стали использовать в промышленности и медицине радиоактивные изотопы, накапливающиеся в ОЯТ. После того как топливо отработает свою кампанию (время нахождения сборки в активной зоне реактора в условиях работы на номинальной мощности), его отправляют в бассейн выдержки, затем в хранилище непосредственно в реакторном отделении, а после этого — на переработку или захоронение. Бассейн выдержки предназначен для отвода тепла и защиты от ионизирующего излучения, поскольку ТВС после извлечения из реактора остаётся опасной.

В США, Канаде или Швеции ОЯТ не отправляют на повторную переработку. Другие страны, среди них и Россия, работают над замкнутым топливным циклом. Он позволяет существенно сократить расходы на производство ядерного топлива, поскольку повторно используется часть ОЯТ.

Топливные стержни растворяются в кислоте, после чего исследователи выделяют из отходов плутоний и неиспользованный уран. Около 3% сырья эксплуатировать повторно невозможно, это высокоактивные отходы, которые проходят процедуры битумирования или остекловывания.

Из отработавшего ядерного топлива можно получить 1% плутония. Этот металл не требуется обогащать, Россия использует его в процессе производства инновационного MOX-топлива. Замкнутый топливный цикл позволяет сделать одну ТВС дешевле приблизительно на 3%, однако такая технология требует больших инвестиций на строительство промышленных узлов, поэтому пока не получила широкого распространения в мире. Тем не менее, топливная компания «Росатома» не прекращает исследования в этом направлении. Недавно Пронедра писали, что в Российской Федерации работают над топливом, способным в активной зоне реактора утилизировать изотопы америция, кюрия и нептуния, которые входят в те самые 3% высокорадиоактивных отходов.

Источник

Ядовитая зеленая жижа в бочках? Все как в «Симпсонах»? Задаем глупые вопросы о ядерном топливе, которое привезли в Беларусь

Буквально на прошлой неделе стало известно, что на Белорусскую АЭС прибыл состав с ядерным топливом для первого энергоблока. Примерные сроки завоза назывались и раньше, а вот точная дата держалась в секрете по понятным причинам. «Атомка» вот-вот должна заработать, но вопросов о ее работе у белорусов все еще крайне много. Мы постарались ответить хотя бы на маленькую их часть и обратились к экспертам, задав им максимально наивные, простые и глупые вопросы о сложных процессах, которые так или иначе касаются каждого из нас.

Длинная производственная цепочка создания ядерного топлива начинается с добычи урана. Его добывают несколькими способами: методом подземного выщелачивания либо в шахтах или открытых карьерах.

Урановую руду перемалывают и растворяют для появления концентрированной соли урана, которую затем высушивают до сухого концентрата. Полученные оксиды урана смешивают с фтором, превращая в гексафторид урана, который легко может принимать газообразную форму. Это понадобится на следующей стадии — при обогащении. Таким образом, уран несколько раз меняет свое состояние, переходя из твердого вещества в жидкое и газообразное.

На обогатительных заводах гексафторид урана в газообразном состоянии закачивают в центрифуги, в которых за счет высокой скорости вращения создается центробежная сила, превышающая силу тяготения Земли в сотни тысяч раз. Газовая центрифуга вращается со скоростью более 1,5 тыс. оборотов в секунду. В процессе обогащения тяжелые атомы урана-238 отделяются от более легких атомов урана-235 и концентрация урана-235 увеличивается. Для топлива энергетических реакторов уран обогащают по изотопу уран-235 на уровне до 5%.

Для производства ядерного топлива обогащенный уран вновь переводят из газообразного в твердое состояние. Порошкообразный обогащенный диоксид урана смешивают с пластификатором и кладут под пресс.

На выходе получаются спрессованные таблетки, которые затем проходят процесс спекания при температуре около 1800 градусов в течение 18—20 часов.

какое топливо используется на атомных электростанциях

Полученная в процессе спекания топливная таблетка весит всего четыре с половиной грамма, но в ней скрыта огромная энергия. По энерговыделению она эквивалентна 640 кг дров, 400 кг каменного угля, 360 куб. м газа, 350 кг нефти.

Далее готовые таблетки помещаются в специальные металлические трубки — оболочки твэлов. Тепловыделяющий элемент (твэл) — это основа конструкции ядерного топлива. Он представляет собой герметично заваренную металлическую трубку из циркониевого сплава, которая снаряжается топливными таблетками (в топливе реактора ВВЭР-1200 — приблизительно 350 шт.). Твэлы собирают в топливные кассеты — тепловыделяющие сборки (ТВС). В одной ТВС для реактора ВВЭР-1200 — 312 твэлов, активная зона реактора состоит из 163 ТВС.

какое топливо используется на атомных электростанциях

Все процессы полностью автоматизированы, проходят под постоянным контролем компьютеров, и любая случайность или влияние человеческого фактора минимизированы.

какое топливо используется на атомных электростанциях

Как его везли в Беларусь? На поезде, самолете, машине? Все это делалось под большим секретом?

Ядерное топливо можно перевозить в специальных транспортных упаковочных контейнерах повышенной прочности железнодорожным, воздушным и морским транспортом. Для поставки из России в Беларусь оптимальный вариант — железнодорожный.

Конфиденциальной информацией являются сами маршруты транспортировки ядерного топлива.

За многие десятилетия существования атомной энергетики мировая атомная промышленность давно выработала очень строгие нормы безопасности по транспортировке различных ядерных материалов. При этом перевозка свежего необлученного ядерного топлива не представляет радиационной опасности.

Как происходит процесс загрузки? Сотрудники делают это вручную или используют специальных роботов?

Перед загрузкой топлива на атомной станции проходит обязательная проверка готовности персонала и оборудования, разрабатывается штатная программа и только после этого дается добро на загрузку. Топливные кассеты загружаются в реактор с помощью специальной перегрузочной машины.

какое топливо используется на атомных электростанциях

Что было бы, если бы защитная оболочка топлива раскололась, а порошок высыпался на землю?

В топливной кассете тепловыделяющие элементы (твэлы, то есть циркониевые трубки с урановыми таблетками внутри) соединены в жесткой конструкции с помощью решеток, металлического каркаса и других элементов. Такая конструкция сохраняет целостность даже после эксплуатации в активной зоне реактора при высоких температурах на протяжении 4—5 лет. Кроме того, внутри оболочки нет порошка, а есть спеченные топливные таблетки.

Загрузили топливо в реактор, а дальше что? Что с ним происходит в реакторе и как оно «отапливает» реактор?

какое топливо используется на атомных электростанциях

Грубо говоря, если на ТЭС с паровыми турбинами, чтобы нагреть воду, приходится сжигать уголь, мазут или газ, то на АЭС вода нагревается от энергии деления атомного ядра.

Сколько работает топливо после загрузки? Его работу как-то контролируют в реакторе?

В зависимости от топливного цикла, который у каждой АЭС индивидуален, каждая тепловыделяющая сборка может эксплуатироваться порядка 4—5 лет, в некоторых случаях — еще дольше. Когда на станции проводится регулярный планово-предупредительный ремонт, часть отработавшего топлива извлекают и подгружают свежее топливо. В зависимости от цикла облучения каждая ТВС меняет свою позицию в активной зоне. Состояние топлива регулярно контролируется и анализируется.

После того как топливо отработает свой срок, как его извлекают?

какое топливо используется на атомных электростанциях

Можно использовать отработанное топливо или это уже просто опасный мусор?

Разумеется, можно. В разных странах существуют различные стратегии безопасного хранения или переработки ОЯТ. Рециклирование отработавшего ядерного топлива — это динамично развивающееся направление атомной науки. Существуют заводы по переработке ОЯТ, при этом «невыгоревший» уран и плутоний, образовавшийся внутри твэлов после облучения, можно извлекать и повторно использовать для производства уран-плутониевого топлива. Причем как для классических реакторов на тепловых нейтронах (РЕМИКС-топливо; сейчас оно проходит опытную эксплуатацию на Балаковской АЭС в России), так и для инновационных реакторов на быстрых нейтронах (МОКС-топливо и СНУП-топливо используются на Белоярской АЭС).

Покупай с оплатой онлайн по карте Visa и выигрывай iPhone каждую неделю

Источник

Атомные электростанции

Атомная электростанция или сокращенно АЭС это комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Во второй половине 40-х годов, перед тем, как были закончены работы по созданию первой атомной бомбы которая была испытана 29 августа 1949 года, советские ученые приступили к разработке первых проектов мирного использования атомной энергии. Основным направлением проектов была электроэнергетика.

В мае 1950 года в районе поселка Обнинское Калужской области, начато строительство первой в мире АЭС.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США.

Для проверки работоспособности генератор был подключен к четырем лампам накаливания, ни то не ожидал, что лампы зажгутся.

С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первые Атомные электростанции

Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать Обнинская АЭС.

какое топливо используется на атомных электростанциях
В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт.

Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969.

В 1973 г. запущена Ленинградская АЭС.

В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания) ее мощность составляла 46 МВт.

В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами в производстве ядерной электроэнергии являются:

Классификация АЭС

Атомные электростанции можно классифицировать по нескольким направлениям:

По типу реакторов

По виду отпускаемой энергии

На атомных станциях, расположенных на территории России имеются теплофикационные установки, они необходимы для подогрева сетевой воды.

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых, его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых, использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Как происходит переработка топлива АЭС

Спустя год использования урана в ядерных реакторах необходимо производить его замену.

Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.

Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.

какое топливо используется на атомных электростанциях

Топ-10 АЭС по мощности

Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.

Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.

Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.

По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.

Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.

Принцип работы АЭС

Принцип работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР).

Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура.

Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы.

На выходе из турбин, пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.

какое топливо используется на атомных электростанциях
Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ.

Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор).

Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) — два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Устройство ядерного реактора

В ядерном реакторе используется процесс деления ядер, при котором тяжелое ядро распадается на два более мелких фрагмента.

Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны.

Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее.

Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией.

При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и атомной электростанции таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции.

Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны.

Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

Основные элементы ядерного реактора

какое топливо используется на атомных электростанциях

Принцип действия ядерного реактора

Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель.

Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами.

В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию, в виде гамма излучения и тепла.

Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается.

Это и есть цепная реакция — принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом, в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур).

Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию.

Преобразование ядерной энергии в электрическую можно представить схематично:

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов.

Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора.

Далее, вокруг отражателя устанавливается теплоизоляция. Поверх теплоизоляции находится защитная оболочка из бетона, которая задерживает радиоактивные вещества и не пропускает их в окружающее пространство.

Атомная станция теплоснабжения

Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.

Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):

На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:

Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.

Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»

Недостатки и преимущества АЭС

Любой инженерный проект имеет свои положительные и отрицательные стороны.

Положительные стороны атомных станций:

Отрицательные стороны атомных станций:

Научные разработки в сфере атомной энергетики

Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.

Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.

Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.

Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.

Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе — и индивидуальных домов.

Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Производство водорода

Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.

INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

Термоядерная энергетика

Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.

Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.

Что такое КПД

Коэффициент полезного действия (КПД) — характеристика эффективности системы или устройства в отношении преобразования или передачи энергии.

Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой. КПД является безразмерной величиной и часто измеряется в процентах.

КПД атомной электростанции

Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.

Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.

Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.

Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.

Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.

Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.

Пример тому авария на АЭС в Чернобыле и японское землетрясение в марте 2011 года, приведшее к аварии на АЭС, расположенной на острове Хонсю, в городе Окума, префектуры Фукусима.

Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.

КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.

Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).

ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.

Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.

Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.

ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.

Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.

Первая электростанция в мире

какое топливо используется на атомных электростанцияхСамая первая центральная электростанция, the Pearl Street, была сдана в эксплуатацию 4 сентября 1882 года в Нью-Йорке.

Станция была построена при поддержке Edison Illuminating Company, которую возглавлял Томас Эдисон.

На ней были установлены несколько генераторов Эдисона общей мощностью свыше 500 кВт.

Станция снабжала электроэнергией целый район Нью-Йорка площадью около 2,5 квадратных километров.

Станция сгорела дотла в 1890году, сохранилась только одна динамо-машина, которая сейчас находится в музее the Greenfield Village, Мичиган.

30 сентября 1882 года заработала первая гидроэлектростанция the Vulcan Street в штате Висконсин. Автором проекта был Г.Д. Роджерс, глава компании the Appleton Paper & Pulp.

На станции был установлен генератор с мощностью приблизительно 12.5 кВт. Электричества хватало на дом Роджерса и на две его бумажные фабрики.

Электростанция Gloucester Road. Брайтон был одним из первых городов в Великобритании с непрерывным электроснабжением.

Станция состояла из динамо щетки, которая использовалась, чтобы привести в действие шестнадцать дуговых ламп.

В 1885 году электростанция Gloucester была куплена компанией Brighton Electric Light. Позже на этой территории была построена новая станция, состоящая из трех динамо щеток с 40 лампами.

Электростанция Зимнего дворца

В 1886 году в одном из внутренних дворов Нового Эрмитажа была построена электростанция.

Автором проекта выступил техник дворцового управления Василий Леонтьевич Пашков.

Электростанция была крупнейшей во всей Европе, не только на момент постройки, но и на протяжении последующих 15 лет.

какое топливо используется на атомных электростанциях
Ранее для освещения Зимнего дворца использовались свечи, с 1861 года начали использовать газовые светильники. Так как электролампы имели большее преимущество, были начаты разработки по внедрению электроосвещения.

Прежде чем здание было полностью переведено на электричество, освещении при помощи ламп использовали для освещения дворцовых зал во время рождественских и новогодних праздников 1885 года.

9 ноября 1885 года, проект строительства «фабрики электричества» был одобрен императором Александром III. Проект включал электрификацию Зимнего дворца, зданий Эрмитажа, дворовой и прилегающей территории в течение трех лет до 1888 года.

Была необходимость исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Его разместили во втором дворе Эрмитажа, с тех пор называемом «Электрическим».

Как выглядела станция

Здание станции занимало площадь 630 м², состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электрическими динамо-машинами. Общая мощность достигала 445 л.с.

Первыми осветили часть парадных помещений:

Было предложено три режима освещения:

Крупные ТЭС, АЭС и ГЭС России

какое топливо используется на атомных электростанциях

Крупнейшие электростанции России по федеральным округам:

Центральный:

Уральский:

Приволжский:

Сибирский ФО:

Южный:

Северо-Западный:

Список электростанций России, которые вырабатывают энергию при помощи воды, расположены на территории Ангаро-Енисейского каскада:

Енисей:

Ангара:

Атомные электростанции России

какое топливо используется на атомных электростанциях

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС[38].

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Атомные электростанции США

АЭС Шиппингпорт с номинальной мощностью 60 МВт, открыта в 1958 году в штате Пенсильвания. После 1965 года произошло интенсивное сооружение атомных электростанций по всей территории Штатов.

Основная часть атомных станций Америки была сооружена в дальнейшие после 1965 года 15 лет, до наступления первой серьезной аварии на АЭС на планете.

Если в качестве первой аварии вспоминается авария на Чернобыльской АЭС, то это не так.

Первая авария произошла в штате Пенсильвания на станции Три-Майл-Айленд 28 марта 1979 года.

какое топливо используется на атомных электростанциях
После авария правительство Соединенных Штатов Америки откорректировало условия безопасности функционирования всех АЭС в государстве.

Это соответственно привело к продолжению периода строительства и значительному подорожанию объектов «мирного атома». Такие изменения затормозили развитие общей индустрии в США.

В конце двадцатого века в Соединенных Штатах было104 работающих реактора. На сегодняшний день США занимают первое место на земле по численности ядерных реакторов.

С начала 21 столетия в Америке было остановлено четыре реактора в 2013 году, и начато строительство ещё четырех.

Фактически на сегодняшний момент в США функционирует 100 реакторов на 62 атомных электростанциях, которыми производится 20% от всей энергии в государстве.

Последний сооруженный реактор в США был введен в эксплуатацию в 1996 году на электростанции Уотс-Бар.

Власти США в 2001 году приняли новое руководство по энергетической политике. В нее внесен вектор развития атомной энергетики, посредствам разработки новых видов реакторов, с более подходящим коэффициентом экономности, новых вариантов переработки отслужившего ядерного топлива.

В планах до 2020 года было сооружение нескольких десятков новых атомных реакторов, совокупной мощностью 50 000 МВт. Кроме того, достичь поднятия мощности уже имеющихся АЭС приблизительно на 10 000 МВт.

США — лидер по количеству атомных станций в мире

Благодаря внедрению данной программы, в Америке в 2013 году было начато строительство четырех новых реакторов – два из которых на АЭС Вогтль, а два других на Ви-Си Саммер.

Эти четыре реактора новейшего образца – АР-1000, производства Westinghouse.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *