какое тело называют брусом
Какое тело называют брусом
Реальные детали имеют самую разнообразную конфигурацию. Однако каждая деталь в зависимости от соотношения ее трех основных измерений может быть отнесена к одному из следующих четырех типов: брусу, пластине, оболочке или массиву.
Брусом называется тело, два измерения которого малы по сравнению с третьим (рис. 1.2). Его можно представить себе как тело, образованное движением плоской фигуры, центр тяжести которой перемещается по некоторой линии —оси бруса, а плоскость фигуры остается все время нормальной к этой оси. Образующую брус фигуру называют его поперечным сечением. Если размеры и конфигурация фигуры в процессе ее перемещения не изменяются, брус называется брусом постоянного сечения, а при изменении ее размеров и конфигурации — брусом переменного сечения. Ось бруса может быть прямой, а также плоской или пространственной кривой линией. Соответственно этому брусья разделяются на прямые и кривые, плоские и пространственные. Тонкий длинный прямой брус часто называют стержнем.
Оболочкой принято называть тело, одно измерение которого мало по сравнению с двумя другими (рис. 1.3). Поверхность, делящая толщину оболочки пополам, называется срединной поверхностью. Подобное тело, срединная поверхность которого до нагружения представляет собой плоскость, называется пластиной (рис. 1.4).
Тела, все три измерения которых одного порядка, называются массивами.
В сопротивлении материалов основным объектом изучения являются тела, имеющие форму бруса. Рассматриваются также некоторые задачи из теории пластин и оболочек. Детали, имеющие форму массива, в сопротивлении материалов вообще не рассматриваются, они являются объектом изучения в теории упругости.
Тема 2.1 Основные понятия и допущения
Элементы сооружений отличаются друг от друга формами, размерами, материалом, функциональным назначением, рядом специальных требований. При этом следует отметить, что все без исключения элементы как искусственного, так и естественного происхождения обладают такими свойствами, как прочность и жесткость, то есть способностью, не разрушаясь воспринимать различные нагрузки и сопротивляться изменению своих первоначальных форм и размеров, без чего не может нормально функционировать сооружение. Цель расчетов в сопротивлении материалов – создание прочных, устойчивых, обладающих достаточной жесткостью, долговечностью и вместе с тем экономичных элементов сооружений
Например, конструкции стропильной фермы, междуэтажных перекрытий зданий должны выдерживать нагрузки от атмосферных воздействий, оборудования и людей и обладать достаточной жесткостью, обеспечивающей ограничение прогибов для создания нормальных условий функционирования сооружения.
Рис. 1. Характер деформирования и разрушения стержня под нагрузкой:
а) – элемент до нагружения; б) – деформация стержня при изгибе; в) – вид излома элемента при изгибе; г) – изгиб стержня при сжатии
Прочностные и жесткостные качества элементов сооружений зависят от многих факторов: материала, размеров, характера возникающих деформаций и др. Металлические конструкции обладают большей прочностью и жесткостью, чем аналогичные деревянные конструкции. Стержень из одного и того же материала, имеющий большие поперечные размеры, более прочный и жесткий, при этом его легче разрушить, изгибая, чем растягивая. Тонкий стержень при его сжатии разрушается в результате выпучивания в поперечном направлении, в то же время это явление отсутствует при продольном растяжении и для разрушения стержня требуется значительно большая нагрузка.
Например, возьмем деревянный брусок (рис.1, а). Начнем сгибать стержень. Чем сильнее мы будем прикладывать усилия, тем больше он изогнется (рис.1 б), и при какой то величине усилий сломается (рис.1, в). Подведя итог можно утверждать, что всякое реальное тело под воздействием сил меняет свою форму и размеры, т. е. деформируется. Деформации обуславливают появление внутри элемента сил сопротивления. Если внешние силы больше сил сопротивления, происходит разрушение элемента сооружения.
При возрастании нагрузки выше определенных значений в теле наряду с упругими будут возникать деформации не исчезающие после снятия нагрузки. Такие деформации называются остаточными. Возникновение остаточных деформаций, наравне с разрушением связано с нарушением нормальной работы конструкции и, как правило, недопустимо.
Способность конструкции воспринимать заданную нагрузку, не разрушаясь и без остаточных деформаций, называют прочностью.
Все элементы сооружения, из каких бы материалов они ни были изготовлены, под нагрузкой деформируются. Однако значительные деформации могут мешать нормальной эксплуатации сооружения.
Способность сооружений и ее частей под нагрузкой сохранять свои размеры и форму в установленных нормами пределах называется жесткостью.
Рассмотрим еще один пример. Будем сжимать тонкий и длинный стержень (тот же деревянный брусок). Уже при незначительной силе стержень изогнется, как показано на рис.1, г. В этом случае первоначальная форма прямолинейная форма равновесия стержня становится неустойчивой.
Способность конструкции, и ее частей, сохранять под нагрузкой первоначальную форму упругого равновесия называется устойчивостью. Обычно потеря устойчивости сопровождается мгновенным изменением формы элемента и разрушением конструкции.
Методами сопротивления материалов выполняются расчеты, на основании которых определяются необходимые размеры деталей машин и конструкций инженерных сооружений. Любая конструкция должна обладать надежностью при эксплуатации и быть экономичной.
Надежность – свойство конструкции выполнять заданные функции, сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение требуемого промежутка времени.
В сопротивлении материалов широко применяются методы теоретической механики и математического анализа, используются данные из разделов физики, изучающих свойства различных материалов, материаловедения и других наук. К тому же сопротивление материалов является наукой экспериментально-теоретической, так как она широко использует опытные данные и теоретические исследования.
ЗАДАНИЕ:
Что изучает раздел «Сопротивление материалов»?
Выписать определения: прочность, жесткость, устойчивость, надежность и экономичность.
§2. Реальный объект и расчетная схема
При выборе расчетной схемы вводятся упрощения (схематизация) реального объекта, т.е. отбросить все те факторы, которые не могут сколько-нибудь заметным образом повлиять на работу системы в целом.
Такого рода упрощения задачи совершенно необходимы, так как решение с полным учетом всех свойств реального объекта является принципиально невозможным в силу их очевидной неисчерпаемости.
Основным упрощающим приемом в сопротивлении материалов является приведение геометрической формы тела к схемам бруса (стержня), оболочки или пластины. Как известно, любое тело в пространстве характеризуется тремя измерениями.
Рис. 2. Прямой брус (стержень) постоянного сечения
ЗАДАНИЕ:
У казать чем отличается расчетная схема от реального объекта.
Начертить стержень, изобразив его ось и поперечное сечение, записать определение стержня.
§3. Связи и опорные устройства
Для соединения отдельных частей конструкции между собой и передачи внешней нагрузки на основание на нее накладываются связи , ограничивающие перемещения тех точек сооружения, к которым они приложены. Связи могут ограничивать либо повороты точек сооружения, либо их линейные смещения, либо и то и другое.
Основным видом связей в расчетной схеме является шарнирная связь.
Все опорные связи условно делятся на три основных типа:
— Подвижная шарнирная опора (рис.3, а). Такая опора не препятствует вращению конца бруса и его перемещению вдоль плоскости качения. В ней может возникать только одна реакция, которая перпендикулярна плоскости качения и проходит через ось катка (R).
— Жесткая заделка или защемление (рис.3, в). Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре в общем случае может возникать реакция, которую обычно раскладывают на две составляющие (H и R) и момент защемления (М).
При рассмотрении реального объекта в число внешних сил включаются не только заданные нагрузки, но и реакции связей (опор), дополняющие систему сил до равновесного состояния.
§4. Внешние и внутренние силы. Метод сечений
Поверхностные силы приложены к участкам поверхности и являются результатом непосредственного контактного взаимодействия рассматриваемого объекта с окружающими телами (давление ветра, воды на стенку).
В зависимости от соотношения площади приложения нагрузки и общей площади поверхности рассматриваемого тела, поверхностные нагрузки подразделяются на сосредоточенные и распределенные.
Динамические нагрузки также подразделяются на периодические и случайные нагрузки. К случайным нагрузкам относятся нагрузки, действующие на детали автомобилей, тракторов, станков, а также нагрузки, действующие на сооружения (дома, мачты, краны и т.п.) от давления ветра, снега и т.п.
Временная нагрузка может сохранять более или менее постоянную величину в течение всего периода ее действия, а может непрерывно изменяться по некоторому закону; в последнем случае она называется переменной нагрузкой.
По отношению к выбранному материальному телу (элементу конструкции) все действующие силы подразделяются на внешние и внутренние силы. Под внешними силами (нагрузками) понимаются силы взаимодействия данного материального тела со всеми другими окружающими его телами.
Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами , которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия. Эти силы сопротивляются стремлению внешних сил разрушить элемент конструкции, изменить его форму, отделить одну часть от другой. Вообще внутренние силы возникают между всеми смежными частицами тела при нагружении.
ЗАДАНИЕ:
Составить таблицу «Виды нагрузок», в таблице дать характеристику каждому виду нагрузки.
Рис.4. Внутренние силовые факторы, возникающие при действии нагрузки
В зависимости от вида внутренних силовых факторов, возникающих в сечении, различают различные следующие виды нагружения бруса:
— Растяжение или сжатие. Действует только продольная сила N.
— Кручение. Действует только крутящий момент T.
— Сдвиг. Действует только поперечная сила Q x или Q y
— Изгиб. Действует только изгибающий момент M x или M y (чистый изгиб), при действии изгибающего момента и поперечной силы (поперечный изгиб).
— Сложное сопротивление. Одновременное действие нескольких силовых факторов. Например, M x и T, M и N.
Итак, внутренние усилия в сечении есть функции параметров, определяющих положение сечения в теле, и нагрузок по одну сторону от сечения. Эти функции могут быть представлены аналитически или графически. График, показывающий изменение внутреннего усилия в зависимости от положения сечения, называется эпюрой . Ординаты усилий в определенном масштабе откладывают от линии, соответствующей оси бруса.
ЗАДАНИЕ:
Начертить внутренние силовые факторы стержня(рис. 4), дать пояснение каждому символу на этой схеме и указать вид нагружения при котором возникают N , Q y и Q z , Т , M z и М у .
§5. Допущения, применяемые в сопротивлении материалов
Для построения теории сопротивления материалов принимают некоторые понятия и допущения относительно структуры и свойств материалов, а также о характере деформаций. Приведем основные из них.
1. В сопротивлении материалов принято рассматривать все материалы как однородную сплошную среду, независимо от их микроструктуры. Под однородностью материала понимают независимость его свойств от величины выделенного из тела объема. И хотя в действительности реальный материал, как правило, неоднороден (уже в силу его молекулярного строения), тем не менее, указанная особенность не является существенной, поскольку в сопротивлении материалов рассматриваются конструкции, размеры которых существенно превышают не только межатомные расстояния, но и размеры кристаллических зерен.
Металлы и сплавы, как правило, изотропны, так как большинство металлов имеет мелкозернистую структуру. Благодаря большому количеству кристаллов свойства материалов выравниваются в различных направлениях и можно считать эти материалы практически изотропными. В настоящее время широкое распространение получили анизотропные композиционные материалы, состоящие из двух компонентов – наполнителя и связующего. Наполнитель состоит из уложенных в определенном порядке высокопрочных нитей – матрицы, что и определяет значительную анизотропию композита. Композиционные материалы имеют высокую прочность при значительно меньшем, чем металлы весе.
Результат воздействия на тело системы сил равен сумме результатов воздействия тех же сил, прилагаемых к телу последовательно и в любом порядке (рис. 6). Под словами «результат воздействия» следует понимать – деформации, внутренние силы и перемещения отдельных точек.
Брус (механика)
Брус (в механике материалов и конструкций) — модель тела, у которого один из размеров гораздо больше двух других. При расчётах брус заменяют его продольной осью. В строительной механике вместо термина «брус» в том же значении чаще используют термин стержень, который входит в состав общепринятого термина «стержневые системы».
К стержневым системам относятся фермы, рамы и многие другие. Термин же «брусчатые системы» в литературе не используется, за исключением характеристики срубного строения (дом из деревянных брусьев или бревен).
По виду деформации (нагрузки):
По геометрической форме:
По виду поперечного сечения:
По виду нагружения:
Литература
См. также
Другие расчётные модели деформируемого тела:
Полезное
Смотреть что такое «Брус (механика)» в других словарях:
Механика строительная — – наука о принципах и методах расчёта сооружений на прочность, жёсткость, устойчивость и колебания. Основные объекты изучения строительной механики плоские и пространственные стержневые системы и системы, состоящие из пластинок и оболочек.… … Энциклопедия терминов, определений и пояснений строительных материалов
Стержень (строительная механика) — У этого термина существуют и другие значения, см. Стержень. Стержень тело удлиненной формы, два размера которого (высота и ширина) малы по сравнению с третьим размером (длиной) [1] [2] В таком же значении иногда используют термин «брус», а… … Википедия
Физико-химическая механика — – раздел коллоидной химии, изучающий структурно – механические свойства дисперсных систем. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.] Рубрика термина: Общие термины Рубрики энциклопедии … Энциклопедия терминов, определений и пояснений строительных материалов
Ласточкин хвост (механика) — У этого термина существуют и другие значения, см. Ласточкин хвост … Википедия
Морские термины — Эта страница глоссарий. # А … Википедия
Бикгед — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы … Википедия
Бимсы — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы … Википедия
Водорез, или грен — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы … Википедия
Книпель — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы … Википедия
Кончебас — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы … Википедия
Формы элементов конструкции
Все многообразие форм сводится к трем видам по одному признаку.
1. Брус — любое тело, у которого длина значительно больше других размеров.
В зависимости от форм продольной оси и поперечных сечений различают несколько видов брусьев:
— прямой брус постоянного поперечного сечения (рис. 18.3а);
— прямой ступенчатый брус (рис. 18.36);
— криволинейный брус (рис. 18.3в).
2. Пластина — любое тело, у которого толщина значительно меньше других размеров (рис. 18.4).
Массив — тело, у которого три размера одного порядка.
Контрольные вопросы и задания
1. Что называется прочностью, жесткостью, устойчивостью?
2. По какому принципу классифицируют нагрузки в сопротивлении материалов? К какому виду разрушений приводят повторно-переменные нагрузки?
3. Какие нагрузки принято считать сосредоточенными?
4. Какое тело называют брусом? Нарисуйте любой брус и укажите ось бруса и его поперечное сечение. Какие тела называют планами?
5. Что называется деформацией? Какие деформации называют упругими?
6. При каких деформациях выполняется закон Гука? Сформулируйте закон Гука.
7. Что такое принцип начальных размеров?
8. В чем заключается допущение о сплошном строении материалов? Поясните допущение об однородности и изотропности материалов.
Дата добавления: 2015-04-11 ; просмотров: 30 ; Нарушение авторских прав
Формы элементов конструкции
Все многообразие форм сводится к трем видам по одному признаку.
1. Брус — любое тело, у которого длина значительно больше других размеров.
В зависимости от форм продольной оси и поперечных сечений различают несколько видов брусьев:
— прямой брус постоянного поперечного сечения (рис. 18.3а);
— прямой ступенчатый брус (рис. 18.35);
— криволинейный брус (рис. 18.Зв).
2. Пластина — любое тело, у которого толщина значительно меньше других размеров (рис. 18.4).
3. Массив — тело, у которого три размера одного порядка.
Контрольные вопросы и задания
1. Что называется прочностью, жесткостью, устойчивостью?
2. По какому принципу классифицируют нагрузки в сопротивлении материалов? К какому виду разрушений приводят повторно- переменные нагрузки?
3. Какие нагрузки принято считать сосредоточенными?
4. Какое тело называют брусом? Нарисуйте любой брус и укажите ось бруса и его поперечное сечение. Какие тела называют пластинами?
5. Что называется деформацией? Какие деформации называют упругими?
6. При каких деформациях выполняется закон Гука? Сформулируйте закон Гука.
7. Что такое принцип начальных размеров?
8. В чем заключается допущение о сплошном строении материалов? Поясните допущение об однородности и изотропности материалов.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет