какое тело называется телом отсчета

Какое тело называется телом отсчета

какое тело называется телом отсчета

Система отсчета, тело отсчета какое тело называется телом отсчета какое тело называется телом отсчета
Всякое движение относительно, поэтому для описания движения необходимо условиться, относительно какого другого тела будет отсчитываться перемещение данного тела. Выбранное для этой цели тело называют телом отсчета.

Для описания движения практически приходится связывать с телом отсчета систему координат.

Система отсчета – совокупность системы координат и часов, связанных с телом, относительно которого изучается движение.

Движения тела, как и материи, вообще не может быть вне времени и пространства. Материя, пространство и время неразрывно связаны между собой (нет пространства без материи и времени, и наоборот).
Пространство трехмерно, поэтому «естественной» системой координат является декартова прямоугольная система координат, которой мы, в основном, и будем пользоваться.

какое тело называется телом отсчета
Рис. 2.1

При движении материальной точки её координаты с течением времени изменяются. В общем случае её движение определяется скалярными уравнениями:

r = r(t) = x i + y j + z k(2.2.2)

Уравнения (2.2.1) и (2.2.2) называются кинематическими уравнениями движения материальной точки.

Число независимых координат, полностью определяющих положение точки в пространстве, называется числом степеней свободы.
Если материальная точка движется в пространстве, то она имеет три степени свободы (координаты х, у, z). Если она движется на плоскости – две степени свободы. Если вдоль линии – одна степень свободы.

Всякое движение тела можно разложить на два основных вида движения – поступательное и вращательное.

Поступательное – это такое движение, при котором любая прямая, связанная с движущимся телом, остается параллельной самой себе и все точки твердого тела совершают равные перемещения за одинаковое время (рис. 2.2).

Источник

Механическое движение

какое тело называется телом отсчета

Механическое движение

Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.

«Относительно других тел» — очень важные слова в этом определении. Для описания движения нам нужны:

В совокупности эти три параметра образуют систему отсчета.

В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉

Прямолинейное равномерное движение

Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.

Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.

Мы можем охарактеризовать это движение следующими величинами.

Скалярные величины (определяются только значением)

Векторные величины (определяются значением и направлением)

Проецирование векторов

Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.

Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.

Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.

какое тело называется телом отсчета

Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.

Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.

Скорость

→ →
V = S/t


V — скорость [м/с]

S — перемещение [м]
t — время [с]

Средняя путевая скорость

V ср.путевая = S/t

V ср.путевая — средняя путевая скорость [м/с]
S — путь [м]
t — время [с]

Задача

Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.

Решение:

Возьмем формулу средней путевой скорости
V ср.путевая = S/t

Подставим значения:
V ср.путевая = 210/2,5 = 84 км/ч

Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч

Уравнение движения

Основной задачей механики является определение положения тела в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).

Уравнение движения

x(t) = x0 + vxt

x(t) — искомая координата [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v

Уравнение движения при движении против оси

x(t) — искомая координата [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Графики

Изменение любой величины можно описать графически. Вместо того, чтобы писать множество значений, можно просто начертить график — это проще.

В видео ниже разбираемся, как строить графики кинематических величин и зачем они нужны.

Прямолинейное равноускоренное движение

Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».

Итак, прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

Уравнение движения и формула конечной скорости

Основная задача механики не поменялась по ходу текста — определение положения тела в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.

Уравнение движения для равноускоренного движения

x(t) = x0 + v0xt + axt^2/2

x(t) — искомая координата [м]
x0 — начальная координата [м]
v0x — начальная скорость тела в данный момент времени [м/с]
t — время [с]
ax — ускорение [м/с^2]

Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:

Формула конечной скорости

→ →
v = v0 + at


v — конечная скорость тела [м/с]
v0 — начальная скорость тела [м/с]
t — время [с]

a — ускорение [м/с^2]

Задача

Найдите местоположение автобуса через 0,5 часа после начала движения, разогнавшегося до скорости 60 км/ч за 3 минуты.

Решение:

Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

Так как автобус двигался с места, v0 = 0. Значит
a = v/t

Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

Подставим значения:
a = v/t = 60/0,05 = 1200 км/ч^2
Теперь возьмем уравнение движения.
x(t) = x0 + v0xt + axt^2/2

Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

Подставим циферки:
x = 1200*0,5^2/2 = 1200*0,522= 150 км

Ответ: через полчаса координата автобуса будет равна 150 км.

Графики

Мы уже знаем, что такое графики функций и зачем они нужны. Для прямолинейного равноускоренного движения графики будут отличаться. Об этом — в видео ниже

Движение по вертикали

Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с^2, а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).

Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с2. В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с2.

Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.

Помните о том, что свободное падение — это не всегда движение по вертикали. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.

какое тело называется телом отсчета

какое тело называется телом отсчета

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Источник

Вопросы.

1. Как движется тело, если на него не действуют другие тела?

Тело движется равномерно и прямолинейно, либо покоится.

2. Тело движется прямолинейнои равномерно. Меняется ли при этом его скорость?

Если тело движется равномерно и прямолинейно, то его скорость не меняется.

3. Какие взгляды относительно состояния покоя и движения тел существовали до начала XVII в.?

До начала XVII века господствовала теория Аристотеля, согласно которой, если на него не оказывается внешнее воздействие, то оно может покоится, а для того, чтобы оно двигалось с постоянной скоростью на него непрерывно должно действовать другое тело.

4. Чем точка зрения Галилея, касающаяся движения тел, отличается от точки зрения Аристотеля?

Точка зрения Галилея, о движении тел, отличается от точки зрения Аристотеля тем, что тела могут двигаться в отсутствие внешних сил.

5. Как проводился опыт, изображенный на рисунке 19, и какие выводы из него следуют?

какое тело называется телом отсчета

Ход опыта. На тележке, движущейся равномерно и прямолинейно, относительно земли, находятся два шарика. Один шарик покоится на дне тележки, а второй подвешен на нити. Шарики находятся в состоянии покоя относительно тележки, так как силы действующие на них уравновешены. При торможении оба шарика приходят в движение. Они изменяют свою скорость относительно тележки, хотя на них не действуют никакие силы. Вывод: Следовательно, в системе отсчёта, связанной с тормозящей тележкой закон инерции не выполняется.

6. Как читается первый закон Ньютона? ( в современной формулировке)?

Первый закон Ньютона в современной формулировке: существуют такие системы отсчета, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела (силы) или действие этих тел (сил) скомпенсировано (равно нулю).

8. Можно ли в ряде случаев считать инерциальными системы отсчёта, связанные с телами, которые покоятся или движутся прямолинейно и равномерно относительно земли?

Да, можно. Это вытекает из определения инерциальных систем отсчета.

9. Инерциальна ли система отсчета, движущаяся с ускорением, относительно какой-либо инерциальной системы?

Нет, не инерциальна.

1. На столе, в равномерно и прямолинейно движущемся поезде стоит легкоподвижный игрушечный автомобиль. При торможении поезда автомобиль без всякого внешнего воздействия покатился вперед, сохраняя свою скорость относительно земли.
Выполняется ли закон инерции: а) в системе отсчета, связанной с землёй; б) в системе отсчета, связанной с поездом, во время его прямолинейного и равномерного движения? Во время торможения?
Можно ли в описанном случае считать инерциальной систему отсчета, связанную с землёй? с поездом?

а) Да, закон инерции выполняется во всех случаях, т.к. машинка продолжила движение относительно Земли; б) В случае равномерного и прямолинейного движения поезда закон инерции выполняется (машинка неподвижна), а при торможении нет. Земля во всех случаях является инерциальной системой отсчета, а поезд только при равномерном и прямолинейном движении.

Источник

Содержание:

Относительность движения:

Одним из простейших физических явлений является механическое движение тел. Мы видим, что тела, которые нас окружают, движутся или находятся в покое. Движутся люди, летают птицы и самолёты, плавают рыбы и т. п. Неподвижны деревья, дома, столбы линии электропередачи. Каким образом мы определяем каждый раз, движется тело или нет, особенно, когда оно далеко от нас и мы, например, не слышим рабочего шума двигателя автомобиля и не видим, вращаются ли его колёса?

Наблюдение: Проследим за положением автомобиля на дороге относительно какого-то неподвижного предмета, например, дерева на обочине. Если расстояние автомобиля от него со временем изменяется, то приходим к выводу, что автомобиль движется. Если изменений в положении автомобиля относительно дерева нет, то говорим, что автомобиль не движется, т. е. находится в состоянии покоя.

Так же определяем, движется или находится в состоянии покоя поезд, пароход или любое тело.

Изменение положения тела со временем относительно других тел называют механическим движением.

Примерами механического движения являются движение планет вокруг Солнца, туч в небе, воды в реках и океанах, разных частей машин и станков, людей, животных, полёт птиц.

А какую роль играют размеры тела при описании его движения? В некоторых случаях без уточнения размеров тела и его частей обойтись невозможно. Например, когда автомобиль заезжает в гараж, то размеры гаража и автомобиля для водителя будут иметь наибольшее значение. Но бывает немало таких ситуаций, когда размерами тела пренебрегают. Если, например, упомянутый автомобиль движется из Киева в Полтаву и нужно рассчитать время его движения, то нам безразлично, каковы его размеры.

В дальнейшем в зависимости от условий движения исследуемого тела будем считать его или материальной точкой, или состоящим из совокупности материальных точек.

Относительность движения

Наблюдение 1. Представим пассажира, едущего в вагоне поезда. Что можно сказать о механическом состоянии пассажира? Его сосед по вагону скажет, что он неподвижен, так как сидит на месте, а пешеход, мимо которого движется поезд, уверяет, что пассажир движется мимо него. Каждый из них прав: сосед по вагону рассматривает положение пассажира относительно предметов в вагоне, а пешеход — относительно железнодорожного полотна.

В связи с тем, что оба наблюдателя рассматривали положение пассажира относительно разных предметов, они и пришли к разным выводам.

Наблюдение 2. Пассажир сидит в закрытом вагоне, где он видит только его стены и закрытое окно. Сможет ли он сказать, в каком состоянии находится вагон? Если вагон будет медленно двигаться без толчков, поворотов и грохота, то невозможно определить, движется вагон или нет. Надо подойти к окну и посмотреть, изменяется ли со временем положение вагона относительно зданий или других неподвижных предметов вдоль железнодорожного полотна, только после этого можно сказать, движется вагон или стоит на месте.

Наблюдение 3. Вы сидите в пассажирском вагоне во время остановки. Рядом стоит соседний поезд, который заслоняет от вас станционные сооружения. Каждый может припомнить, что когда вдруг окна соседнего поезда начнут «проплывать» мимо вас, в первый момент кажется, что это тронулся ваш вагон, только со временем, когда увидите, что вокзал стоит на месте, осознаете свою ошибку: на самом деле пошёл соседний поезд.

Эта ошибка естественна, причина её состоит в относительности движения и покоя: относительно Земли ваш вагон находится в покое, соседний поезд — движется, если же считать, что он находится в покое, то из-за изменения относительного положения кажется, что тронулся ваш вагон. Таким образом, чтобы определить, движется тело или нет, мы должны указать, относительно какого тела рассматриваем движение.

Тело, относительно которого рассматривают движение, называют телом отсчёта.

Тела отсчёта избирают произвольно. При изучении разных движений за тело отсчёта будем принимать Землю, пароход, дом, поезд или любое другое тело, неподвижное относительно Земли, например стол физического кабинета, на котором будем выполнять опыты.

Итак, чтобы говорить о том, движется тело (например, грузовой автомобиль) или находится в состоянии покоя, нужно сначала выбрать тело отсчёта, а потом посмотреть, изменяется ли относительно него положение рассматриваемого тела.

Свойства механического движения, в частности относительность движения и покоя, изучал знаменитый итальянский учёный Галилео Галилей.

Механическое движение и пространство

Самый важный вывод, сделанный наукой в процессе своего развития: неподвижных тел в природе нет. В науке говорят, что движение является абсолютным. Однако повседневный опыт заставляет нас думать, что множество тел вокруг нас неподвижно. Когда мы идем по дороге, то деревья возле нее, дома кажутся неподвижными, хотя они и движутся вместе с вращением Земли вокруг ее оси, движутся вместе с Землей по орбите вокруг Солнца и т. д.

Таким образом, наука изучает не абсолютные (истинные) движения тел, а их движения относительно других тел, которые условно считаются неподвижными.

Вы уже имеете много сведений о движении разных тел, их скоростях из повседневной жизни, уроков физики, математики, природоведения и других предметов. Теперь перед вами все шире раскрывается мир движущихся тел и их взаимодействий, изучаемых физикой.

Что позволяет делить тела на неподвижные и движущиеся? Чем движущиеся тела отличаются от неподвижных?

Когда мы говорим о движущемся автомобиле, то имеем в виду, что в определенный момент он был рядом с нами, а в другие моменты расстояние между нами и автомобилем будет уже другим, хотя мы стоим на том же месте.

Неподвижные тела в течение всего наблюдения не изменяют своего положения относительно наблюдателя.

какое тело называется телом отсчета

Если тело изменяет свое положение в пространстве, то говорят, что оно совершает механическое движение. Если такого изменения нет, то тело считается неподвижным, то есть пребывающим в покое.

Изменение положения тела в пространстве называют механическим движением.

Механическое движение, как и покой, относительно. Одно и то же тело может быть неподвижным относительно одних тел и движущимся относительно других. Например, водитель автомобиля, движущегося по дороге, движется относительно наблюдателя, стоящего возле дороги, и неподвижен относительно пассажира, сидящего в салоне автомобиля.

Таким образом, чтобы описать механическое состояние тела, необходимо четко определить, относительно каких тел рассматривается его положение. Соответственно, можно дать такое определение механического движения.

Для описания механического движения выбирают тело отсчета.

Тело, относительно которого определяется положение данного тела, называется телом отсчета.

Выбор тела отсчета может существенно изменить описание состояния тела. Рассмотрим пример. На длинную тележку, стоящую на столе, ставим короткую (рис. 2). Придерживая короткую тележку, будем перемещать длинную. Ее положение будет изменяться и относительно стола, и относительно короткой тележки. Наблюдатель на короткой тележке и наблюдатель, стоящий на столе, скажут, что они неподвижны, а длинная тележка движется. Если же наблюдатель будет стоять на длинной тележке, то он скажет, что относительно него движутся стол и короткая зависит от выбора тела отсчета тележка.

какое тело называется телом отсчета

Таким образом, говоря о механическом движении любых физических тел, необходимо указывать тело отсчета.

Относительность движения и система отсчета

В 7-м классе вы узнали, что такое путь, пройденный телом, скорость движения тела, траектория. От чего они зависят? Конечно, от того, как это тело движется. Но не только от этого.

Представьте, что вы сидите в кресле самолета, летящего со скоростью какое тело называется телом отсчетаДвижетесь вы или нет? Один человек скажет, что вы движетесь, а другой — что вы находитесь в состоянии покоя. Кто из них прав? Нравы оба. Пассажир, сидящий в кресле самолета, относительно Земли движется, а относительно самолета — находится в состоянии покоя.

Тело, относительно которого рассматривается движение других тел, называют телом отсчета. Его условно принимают за неподвижное.

Если за тело отсчета принять Землю, то ее следует считать покоящейся, а самолет и его пассажиров — движущимися. Если за тело отсчета принять самолет, то самолет и пассажиры находятся в состоянии покоя, а движется Земля.

Понятия и величины, зависящие от выбора тела отсчета, называют относительными. Таким образом, «состояние покоя» и «состояние движения» — понятия относительные. А относительны ли скорость движения, траектория, путь? В нашем примере скорость движения авиапассажира относительно Земли равна какое тело называется телом отсчетаа относительно самолета — нулю. Значит, скорость — величина относительная.

Убедимся, что относительна и траектория. Рассмотрим вагон (рис. 6), движущийся с постоянной скоростью v по прямолинейному участку пути. По какой траектории будет двигаться яблоко, выпущенное мальчиком из рук?

какое тело называется телом отсчета

Скорость яблока в точке А относительно вагона равна нулю. Яблоко движется вниз по прямолинейной траектории АВ.

А какова начальная скорость яблока относительно Земли? Хотя мальчик не бросил яблоко, а просто выпустил его из рук, начальная скорость яблока относительно Земли нулю не равна! Она равна какое тело называется телом отсчета— скорости движения вагона относительно Земли. Перемещаясь с этой скоростью относительно Земли ио горизонтали и одновременно падая но вертикали, яблоко движется относительно Земли (и наблюдателя на платформе) по криволинейной траектории АС (рис. 7). Значит, и траектория движения тела — понятие относительное.

какое тело называется телом отсчета

А будет ли относительным путь? Если телом отсчета служит Земля, то в нервом примере путь авиапассажира за один час полета равен 900 км. Если же за тело отсчета принят самолет, то путь авиапассажира равен нулю. Таким образом, путь — также величина относительная.

Сделаем вывод. Основные характеристики движения: скорость, траектория, путь — относительны. Они зависят от выбора тела отсчета.

Пусть тело отсчета выбрано. Что еще необходимо для описания движения тел?

Напомним, что механическое движение — это изменение положения тела относительно других тел в пространстве с течением времени. Для определения положения тела нужна система координат, а для измерения времени — часы.

Тело отсчета, жестко связанная с ним система координат и часы образуют систему отсчета (рис. 8). Чаще всего за тело отсчета мы будем принимать Землю (или тело, неподвижное относительно нее).

какое тело называется телом отсчета

Рассмотрим примеры описания движения тел с использованием системы отсчета.

Пример №1

Движение пешехода по прямолинейному участку дороги (рис. 9). За тело отсчета примем дерево. Ось координат какое тело называется телом отсчетанаправим вдоль дороги. Начало координат расположим в точке О (у основания дерева). На рисунке 9 показано, что в момент времени
какое тело называется телом отсчета

Значит, для описания движения тела по заданной прямой достаточно знать для каждого момента времени значение одной координаты.

Пример №2

Движение куска мела по школь-пой доске (по плоскости) (рис. 10). Примем доску за тело отсчета. Для описания движения тела в этом примере одной координаты недостаточно.

какое тело называется телом отсчета

При описании движения тела по плоскости следует использовать две координатные оси (какое тело называется телом отсчета) и для каждого момента времени t знать две координаты (какое тело называется телом отсчета) тела.

Например, на рисунке 10 при какое тело называется телом отсчетамел находился в точке А с координатами какое тело называется телом отсчета— в точке В с координатами какое тело называется телом отсчетаи т.д.

какое тело называется телом отсчета

какое тело называется телом отсчета

Для любознательных:

Пример №3

Для описания движения тела в пространстве (например, мяча, птицы, самолета) необходимы три координатные оси: какое тело называется телом отсчета

Па рисунке 11 показано, как определяют координаты какое тело называется телом отсчетатела в пространстве в некоторый момент времени

Главные выводы:

Относительность механического движения

Как вы уже знаете, положение материальной точки (или тела) в пространстве зависит от выбранной системы отсчета, то есть относительно разных систем отсчета положение материальной точки может быть разным. Это означает, что положение тела в пространстве относительно. Относительно не только положение тела, но и его движение:

• Перемещение и скорость тела в различных системах отсчета, движущихся относительно друг друга, будут иметь различные значения.

Исследуем относительность движения при помощи решения нижеприведенной задачи.

Пример №4

Два рыбака находятся на плоту, движущемся по течению реки (а). Один из рыбаков, сидя на ящике, ловит рыбу, другой же движется перпендикулярно направлению движения плота с одного его края на другой.

какое тело называется телом отсчета

Определите перемещение и скорость второго рыбака относительно наблюдателя, стоящего на берегу.

Решение. Исследуем движение второго рыбака с разных позиций. С этой целью используем две системы отсчета:

Неподвижная система отсчета какое тело называется телом отсчетасвязанная с наблюдателем на берегу. Она неподвижна относительно Земли.

Подвижная система отсчета какое тело называется телом отсчетасвязанная с сидящим рыбаком. Она связана с плотом, движущимся со скоростью течения реки (см: а).

Сидящий рыбак является телом отсчета в движущейся системе отсчета. Ему кажется, что его товарищ переходит с одного края плота на другой со скоростью какое тело называется телом отсчетаи совершает перемещение какое тело называется телом отсчетаВ это время плот вместе с сидящим рыбаком совершает перемещение какое тело называется телом отсчетасо скоростью какое тело называется телом отсчетаотносительно наблюдателя в неподвижной системе отсчета. Таким образом, по правилу сложения двух векторов методом параллелограмма получаем, что результирующее перемещение какое тело называется телом отсчетавторого рыбака относительно неподвижной системы отсчета равно сумме перемещений какое тело называется телом отсчетаи какое тело называется телом отсчета

какое тело называется телом отсчета

Если каждую из двух сторон выражения (1.31) разделим на время движения какое тело называется телом отсчетато получим:

какое тело называется телом отсчета

Отсюда получим обобщенный закон сложения скоростей:

какое тело называется телом отсчета

Скорость движения тела какое тело называется телом отсчетаотносительно неподвижной системы отсчета равна геометрической (векторной) сумме скорости этого тела какое тело называется телом отсчетаотносительно подвижной системы отсчета и скорости какое тело называется телом отсчетаподвижной системы относительно неподвижной.

Используя закон сложения скоростей, вычисляется скорость шагающего по поверхности плота рыбака относительно наблюдателя, стоящего на берегу. Как видно по чертежу, скорости какое тело называется телом отсчетаи какое тело называется телом отсчетаперпендикулярны друг к другу и образуют катеты прямоугольного треугольника какое тело называется телом отсчетаа гипотенуза этого треугольника образует результирующую скорость (b). По теореме Пифагора для численного значения скорости имеем:

какое тело называется телом отсчета

какое тело называется телом отсчета

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *