какое свойство кремния широко используется в радиоэлектронике
Электроника на карбиде кремния: мощнее, быстрее, надежнее
На протяжении развития силовой электроники неоднократно менялся полупроводниковый материал, из которого изготавливались приборы. Селен, германий, кремний… Теперь этот список дополнил такой материал, как карбид кремния, и ему прочат большое будущее. О том, чем карбид кремния хорош именно для электроэнергетики и какие революционные изменения несет его внедрение, пойдет речь в этой статье.
Для переключения электрического тока вместо механических реле все чаще применяются полупроводниковые приборы. Наиболее распространенный вариант — так называемые МОП-транзисторы (аббревиатура расшифровывается как «металл-окисел-полупроводник», в зарубежной литературе применяется термин MOSFET).
Конструкция МОП-транзистора с n-каналом
Если очень упрощенно представить конструкцию МОП-транзистора, то она представляет собой полупроводниковую пластину, в которой сделан проводящий канал, расположенный между изолированным электродом — так называемым затвором — и подложкой. На концах канала располагаются электроды, именуемые истоком и стоком. Обычно подложка и исток электрически соединены. В зависимости от напряжения между затвором и подложкой транзистор либо открыт, либо закрыт. В открытом состоянии поток электронов идет через канал от истока к стоку или в обратном направлении, в зависимости от типа канала (описание регулировки этого процесса подачей напряжения на затвор слишком сложен и выходит за рамки данной статьи). В закрытом состоянии электроны между указанными электродами двигаться не должны. Но из-за конечного сопротивления полупроводникового кристалла в закрытом состоянии наблюдается небольшой ток утечки.
Наличие тока утечки — основной недостаток электронного переключателя по сравнению с механическими контактами реле. Когда контакты реле разомкнуты, ток через них практически равен нулю. Если речь идет о напряжениях порядка сотен и тем более тысяч вольт, токи утечки представляют уже серьезную проблему. Помимо нерационального расходования электроэнергии, они приводят к сильному нагреву коммутирующего прибора, что может привести к его выходу из строя.
Обнаружить карборунд в природе — большая редкость, обычно SiC производят путем синтеза
Наиболее массовым материалом для построения силовой электроники сейчас является кремний. При этом наметилась тенденция внедрения МОП-транзисторов, изготовленных уже не из кремния, а из карбида кремния (SiC). Такие транзисторы имеют намного меньшие токи утечки, чем кремниевые, и многие параметры, критичные для силовой электроники, у них находятся на более высоком уровне.
Физика процессов
Энергетические уровни электронов в полупроводниках и диэлектриках могут находиться в одной из двух зон — валентной или проводимости. Между этими зонами находится так называемая запрещенная зона, в которой энергетические уровни электронов присутствовать не могут. Разница между диэлектриками и полупроводниками заключается только в ширине запрещенной зоны. Принято считать, что у полупроводников она меньше 5,5 эВ.
При температуре, близкой к абсолютному нулю, все электроны располагаются в валентной зоне, материал не проводит электричество. По мере нагревания энергетические уровни части электронов переходят в зону проводимости. Чем выше температура, тем больше электронов переходит на эти уровни, соответственно, сопротивление полупроводника падает, а ток утечки растет. Если не обеспечить эффективный теплоотвод, может начаться процесс, когда, разогрев кристалла влечет за собой увеличение тока утечки, что приводит к еще большему разогреву и т. д. вплоть до выхода прибора из строя.
Чем шире запрещенная зона полупроводника, тем меньше вероятность перехода электронов из зоны валентности в зону проводимости. Соответственно, для снижения тока утечки нужно применять полупроводники с как можно более широкой запрещенной зоной. Силовая электроника постепенно движется в этом направлении. От силовых приборов на основе германия быстро отказались, т. к. материал имел ширину запрещенной зоны око-ло 0,7 эВ. Кремний в этом смысле лучше подошел для силовой электроники, поскольку у него ширина запрещенной зоны составляет 1,12 эВ. Карбид кремния, в зависимости от типа кристаллической решетки, может иметь ширину запрещенной зоны от 2,2 до 3,3 эВ, что позволяет обеспечить на порядок более высокое сопротивление исток-сток в закрытом состоянии. Если кремний выдерживает температуры до +125 °C, то карбид кремния — теоретически до +600 °C (на практике до +200 °C, больше просто корпуса не выдерживают).
Особенностью карбида кремния также является многообразие форм кристаллической решетки, для электроники на практике пока применяются только варианты 4H и 6H. Карбид кремния обладает в три раза большей теплопроводностью по сравнению с кремнием. Это обеспечивает лучший отвод тепла от кристалла.
Технологические проблемы
Человечество использует карбид кремния вот уже больше века, но… как материал для изготовления шлифовальных инструментов. В шлифовальных дисках часто используется карборунд — синтетический материал, содержащий около 93 % SiC.
Из-за того, что карбид кремния представляет собой очень прочный материал, сопоставимый по этому параметру с алмазом, его сложно обрабатывать. Другой проблемой была очистка от примесей. Да, карборунд производится в больших количествах и стоит недорого, но попытки наладить выпуск более чистого карбида кремния сталкивались с проблемами. В итоге массовое производство приемлемых по цене мощных МОП-транзисторов из карбида кремния было налажено только в 2010-х годах.
Недостатком большинства SiC-транзисторов является сложность конструкции драйвера для их управления
Еще одной проблемой, характерной для карбида кремния, является сложность управления изготовленными из него транзисторами. Кремниевый МОП-транзистор открывается при подаче на затвор напряжения от 1 до 4 В относительно истока, в зависимости от модели. Если на затворе 0 В, то такой транзистор будет находиться в закрытом состоянии.
Применение в инверторах
Меньшее удельное напряжение электрического пробоя у SiC по сравнению с кремнием позволяет уменьшить размеры транзистора. В свою очередь, это позволяет увеличить его быстродействие. Так-же более высокое быстродействие транзисторов на карбиде кремния обусловлено тем, что они в процессе работы не входят в режим насыщения.
На транспорте с электрической тягой, в альтернативной энергетике, источниках бесперебойного питания и т. п. часто применяются инверторы, преобразующие постоянный ток в переменный. Наиболее громоздкие элементы инверторов — дроссели, трансформаторы и конденсаторы. Чем выше рабочая частота инвертора, тем компактнее эти элементы. Инвертор на кремниевых транзисторах имеет рабочую частоту не более 50 кГц, транзисторы на карбиде кремния позволяют создавать мощные инверторы с рабочей частотой до 150 кГц. Более низкие токи утечки определяют меньший нагрев SiC-транзисторов, а это значит, что систему теплоотвода можно сделать компактной.
Впервые на электротранспорте SiC-инвертор на транзисторах STMicroelectronics был применен в электромобиле Tesla Model 3, представленном в 2016 г. Применение инновационных транзисторов позволило повысить КПД электрооборудования, что увеличило дальность пробега от одной зарядки.
Уменьшение размеров электрооборудования особенно актуально для электробусов. Компактное электрооборудование на карбиде кремния позволяет создавать электробусы, имеющие практически такую же вместимость как их дизельные аналоги с теми же внешними габаритами.
SiC для цифровой энергетики
Современные транзисторы на карбиде кремния при комнатной температуре имеют сопротивление в закрытом состоянии до 350 МОм против 15 МОм у кремниевых аналогов, а максимальное напряжение между истоком и стоком может достигать 15 кВ. Это позволяет применять такие транзисторы для коммутации в средневольтных распределительных сетях постоянного тока. Именно такие сети будут характерны для «зеленой» энергетики будущего, как ожидается, они образуют так называемый «энергетический Интернет». В подобной распределительной сети обмен электроэнергии будет осуществляться так же свободно, как сейчас мы обмениваемся информацией через интернет. Этот проект продвигается на государственном уровне в Китае. Высокая скорость коммутации, характерная для SiC, позволит оперативно перераспределять потоки энергии от множества небольших генераторов.
Пример транзистора на карбиде кремния, способного выдерживать напряжение до 1200 В, но при этом выполненного в компактном корпусе
Более «приземленный» проект — создание инвертора, позволяющего напрямую преобразовывать постоянный ток от солнечной электростанции в переменный ток с напряжением 10 кВ. В результате появляется возможность подключения электростанции к распределительной сети без использования громоздких трансформаторов.
Уже сейчас SiC-транзисторы применяются в системах управления вращением ветряков. Благодаря таким системам генераторы ветряков можно подключать к сети переменного тока напрямую, минуя преобразования переменного тока в постоянный и обратно. Выбор в пользу карбида кремния был сделан из-за исключительной надежности приборов на его основе.
Выводы
Перспективность технологии SiC наиболее ярко демонстрирует пример компании Cree. Некогда она была ведущим мировым производителем светодиодов, но в 2020 г. продала светодиодное подразделение, а вырученные в результате этого средства вложила в расширение выпуска электроники на основе карбида кремния под брендом Wolfspeed. И это при том, что еще в 2000-х годах Cree была первопроходцем в производстве силовых приборов на нитриде галлия — другом полупроводнике с широкой запрещенной зоной.
Тем не менее повсеместное распространение МОП-транзисторов на карбиде кремния, по мнению автора статьи, будет зависеть от решения задачи упрощения управления. На момент написания статьи никакие компании, кроме UnitedSiC, не представили моделей SiC-транзисторов, запирающихся нулевым, а не отрицательным напряжением. Тем не менее в любом случае у SiC есть применения, где большая выгода от их использования позволяет мириться с более сложной системой управления.
Источник: Алексей Дубневский, журнал «Электротехнический рынок» № 4-5, 2021 год
Кремний и электроника
Если сказать, что в XX век электроника развивалась бурно, значит, ничего не сказать. Скорее её развитие напоминало извержение вулкана.
Чем определилось столь стремительное развитие этой отрасли промышленности? Ведь менее 50 лет назад обычная мобильная связь и обычный персональный компьютер существовали только в фантастических рассказах.
Научные знания и изобретательность инженеров конструкторов и технологов создали это чудо, которым мы сегодня пользуемся. Создание модели атома и квантовая механика определили выделение в отдельный класс полупроводниковых материалов, и началась эпоха создания твердотельных электронных приборов. Эта область промышленности сейчас называется: микроэлектроника.
Основными химическими элементами для создания изделий микроэлектроники являются германий и кремний. На начальном этапе – это кристаллические слитки диаметром от 30 до 200 мм, которые разрезаются на пластины, толщина которых бывает различной, но в основном толщина полупроводниковой пластины – 300 – 350 микрон. Рабочая поверхность пластины полируется до 14 класса чистоты, чтобы убрать все механические нарушения кристаллической решётки.
Кремний, по сравнению с германием, является идеальным материалом для микроэлектронного производства благодаря большому проценту его содержания в земной коре и уникальным технологическим свойствам. На этом материале легко создается диэлектрический слой двуокиси кремния путем обычного термического окисления. Толщина диэлектрика обычно находится в пределах 0, 3 – 1, 5 микрона, но такого слоя достаточно для защиты кремния от диффузии примесей и хорошей диэлектрической изоляции p – n переходов.
Плотность упаковки топологических элементов кремниевой микросхемы зависит от технологической возможности создания минимального размера и рациональной компоновки элементов на площади кристалла. Но не только миниатюризация играет главную роль в нашем стремлении уменьшить размеры топологических элементов, но и быстродействие изделия электронной техники. И размеры элемента как плоскостные, так и залегание p – n переходов по глубине играют в этом вопросе определяющую роль.
Сейчас в производстве кремниевых микросхем активно используются субмикронные размеры при формировании p – n переходов и многоуровневая металлическая разводка, толщиной в несколько микрон. Всё это трудно себе представить, но это то, что мы сейчас используем в обыденной жизни, ведь освоенный в промышленности топологический размер в 0, 5 микрона – это 500 нанометров.
Кремний
Введение
Будучи студентом одного из московских вузов с специальностью «Наноматериалы», я хотел познакомить тебя, дорогой читатель, с самыми важными химическими элементами нашей планеты. Я долго выбирал с чего начать, углерод или кремний, и все таки решил остановиться именно на Si, потому что сердце любого современного гаджета основано именно на нем, если можно так выразиться конечно. Излагать мысли постараюсь предельно просто и доступно, написав этот материал я рассчитывал, в основном на новичков, но и более продвинутые люди смогут почерпнуть что-то интересное, так же хотелось бы сказать, что статья написана исключительно для расширения кругозора заинтересовавшихся. Итак, приступим.
Silicium
Кремний (лат. Silicium), Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086.
В природе элемент представлен тремя стабильными изотопами: 28Si (92,27%), 29Si (4,68%) и 30Si (3,05%).
Плотность (при н.у.) 2,33 г/см³
Температура плавления 1688 K
Порошковый Si
Историческая справка
Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, — изготовление стекла — началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния — оксид SiO2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название ввел Г. И. Гесс в 1834.
Кремний очень распространен в природе в составе обыкновенного песка
Распространение Кремния в природе
По распространенности в земной коре Кремний — второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре Кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии Кремния важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезем SiO2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезем, превышает 400.
Физические свойства Кремния
Думаю тут останавливаться особо не стоит, все физические свойства имеются в свободном доступе, а я же перечислю самые основные.
Температура кипения 2600 °С
Кремний прозрачен для длинноволновых ИК-лучей
Диэлектрическая проницаемость 11,7
Твердость Кремния по Моосу 7,0
Хотелось бы сказать, что кремний хрупкий материал, заметная пластическая деформация начинается при температуре выше 800°С.
Кремний — полупроводник, именно поэтому он находит большое применение. Электрические свойства кремния очень сильно зависят от примесей.
Химические свойства Кремния
Тут много конечно можно сказать, но остановлюсь на самом интересном. В соединениях Si (аналогично углероду) 4-валентен.
На воздухе кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO2.
Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот, легко растворяется в горячих растворах щелочей с выделением водорода.
Кремний образует 2 группы кислородсодержащих силанов — силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, а так же для производства огнеупоров. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB3, SiB6, SiB12).
Получение Кремния
Я думаю это самая интересная часть, тут остановимся поподробнее.
В зависимости от предназначения различают:
1. Кремний электронного качества (т. н. «электронный кремний») — наиболее качественный кремний с содержанием кремния свыше 99,999 % по весу, удельное электрическое сопротивление кремния электронного качества может находиться в интервале примерно от 0,001 до 150 Ом•см, но при этом величина сопротивления должна быть обеспечена исключительно заданной примесью т. е. попадание в кристалл других примесей, хотя бы и обеспечивающих заданное удельное электрическое сопротивление, как правило, недопустимо.
2. Кремний солнечного качества (т. н. «солнечный кремний») — кремний с содержанием кремния свыше 99,99 % по весу, используемый для производства фотоэлектрических преобразователей (солнечных батарей).
3. Технический кремний — блоки кремния поликристаллической структуры, полученного методом карботермического восстановления из чистого кварцевого песка; содержит 98 % кремния, основная примесь — углерод, отличается высоким содержанием легирующих элементов — бора, фосфора, алюминия; в основном используется для получения поликристаллического кремния.
Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого кремния. Это требует предварительного синтеза чистейших исходных соединений кремния, из которых кремний извлекают путем восстановления или термического разложения.
Поликристаллический кремний («поликремний») — наиболее чистая форма промышленно производимого кремния — полуфабрикат, получаемый очисткой технического кремния хлоридными и фторидными методами и используемый для производства моно- и мультикристаллического кремния.
Традиционно поликристаллический кремний получают из технического кремния путём перевода его в летучие силаны (моносилан, хлорсиланы, фторсиланы) с последующими разделением образующихся силанов, ректификационной очисткой выбранного силана и восстановлением силана до металлического кремния.
Чистый полупроводниковый кремний получают в двух видах: поликристаллический (восстановлением SiCl4 или SiHCl3 цинком или водородом, термическим разложением SiI4 и SiH4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного кремния — метод Чохральского).
Тут можно увидеть процесс выращивания кремния, методом Чохральского.
Метод Чохральского — метод выращивания кристаллов путём вытягивания их вверх от свободной поверхности большого объёма расплава с инициацией начала кристаллизации путём приведения затравочного кристалла (или нескольких кристаллов) заданной структуры и кристаллографической ориентации в контакт со свободной поверхностью расплава.
Применение Кремния
Специально легированный кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, а так же много всякой всячины).
Поскольку кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.
Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Si
используется для удаления растворенного в расплавленных металлах кислорода (раскисления).
Кремний является составной частью большого числа сплавов железа и цветных металлов.
Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость.
Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие кремний.
Кремнезем перерабатываются стекольной, цементной, керамической, электротехнической и другими отраслями промышленности.
Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (например процессор твоего компьютера) и однокристальных микросхем.
Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.
Монокристаллический кремний — помимо электроники и солнечной энергетики используется для изготовления зеркал газовых лазеров.
Сверхчистый кремний и продукт его производства
Кремний в организме
Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные кремнием, в тропических морях — известковые илы с низким содержанием кремния. Среди наземных растений много кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание — силикоз.
Кремний, его свойства и применение в современной электронике
Характеристика свойств кремния в аморфной, кристаллической форме. Определение главных свойств атома вещества: атомная масса, электронная конфигурация. Понятие кремнезема как природного соединения кремния, силиция. Содержание в земной коре, его получение.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 23.12.2013 |
Размер файла | 225,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Санкт-Петербургский государственный технологический институт
(технический университет)» (СПбГТИ (ТУ))
СПЕЦИАЛЬНОСТЬ Химическая Технология
НАПРАВЛЕНИЕ Химия веществ и материалов
ДИСЦИПЛИНА Введение в специальность
НА ТЕМУ: Кремний, его свойства и применение в современной электронике
Выполнила студентка 1 курса, группы 131
Жуковская Екатерина Олесевна
Ежовский Юрий Константинович
3. Происхождение названия
4. Нахождение в природе
6. Физические свойства
7. Электрофизические свойства
8. Химические свойства
9. Кремний в организме человека
Самыми распространенным полупроводником в производстве электронных компонентов является кремний, так как запасы его на планете практически безграничны.
Внешний вид простого вещества
Имя, символ, номер: Кремний/Silicium (Si), 14
Атомная масса (молярная масса) 28,0856 а.е.м. (г/моль)
Электронная конфигурация: [Ne] 3s2 3p2, в соед. [Ne] 3s 3p3 (гибридизация)
Радиус атома 132 нм
Ковалентный радиус 111 нм
Радиус иона 42 (+4e) 271 (-4e) нм
Электроотрицательность 1,90 (шкала Полинга)
Электродный потенциал 0
Энергия ионизации (первый электрон) 786,0 (8,15) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н.у.) 2,33 г/ смі
Температура плавления 1414,85 °C (1688 K)
Температура кипения 2349,85 °C (2623 K)
Теплота плавления 50,6 кДж/моль
Теплота испарения 383 кДж/моль
Молярная теплоёмкость 20,16 Дж/(K·моль)
Молярный объём 12,1 смі/моль
Кристаллическая решётка простого вещества
Структура решётки: кубическая, алмазная
Параметры решётки: 5,4307 Е
Температура Дебая 625 К
Теплопроводность (300 К) 149 Вт/(м·К)
3. Происхождение названия
Название силиций или кизель (Kiesel, кремень) было предложено Берцелиусом. Еще ранее Томсон предложил название силикон (Silicon), принятое в Англии и США, по аналогии с борон (Boron) и карбон (Carbon). Слово силиций (Silicium) происходит от силика (кремнезем); окончание «а» было принято в XVIII и XIX вв. для обозначения земель (Silica, Aluminia, Thoria, Terbia, Glucina, Cadmia и др.). В свою очередь слово силика связано с лат. Silex (крепкий, кремень).
Русское название кремний происходит от древнеславянских слов кремень (название камня), кремык, крепкий, кресмень, кресати (ударять железом о ремень для получения искр) и др. В русской химической литературе начала XIX в. встречаются названия кремнезем (Захаров, 1810), силиций (Соловьев, Двигубский, 1824), кремень (Страхов, 1825), кремнистость (Иовский, 1827), кремнеземий и кремний (Гесс, 1831).
4. Нахождение в природе
Содержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом, по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л. В морской воде кремния содержится даже больше, чем фосфора, столь необходимого для жизни на Земле.
Отмечены единичные факты нахождения чистого кремния в самородном виде.
Кремний содержится в большинстве минералов и руд. Необходимые месторождения кварцитов и кварцевых песков есть в очень многих странах мира. Однако, для получения более качественного продукта или для повышения показателей рентабельности, выгоднее использование сырья с максимальным содержанием кремния (вплоть до 99% SiO2). Столь богатые месторождения крайне редки и по всему миру активно и давно используются конкурирующей стекольной промышленностью. Последняя, правда, неохотно перерабатывает сырье даже с минимальным загрязнением железом, но в производстве ферросплавов оно мало критично. В целом по миру обеспеченность кремниевых производств сырьем считается высокой, а соответствующая доля затрат в его себестоимости незначительной (менее 10%).
кремний аморфный атом
«Свободный кремний можно получить прокаливанием с магнием мелкого белого песка, который представляет собой диоксид кремния:
При этом образуется бурый порошок аморфного кремния».
Возможна дальнейшая очистка кремния от примесей.
Очистка в лабораторных условиях может быть проведена путём предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают газообразный моносилан SiH4. Моносилан очищают ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C.
Очистка кремния в промышленных масштабах осуществляется путём непосредственного хлорирования кремния. При этом образуются соединения состава SiCl4 и SiCl3H. Эти хлориды различными способами очищают от примесей (как правило перегонкой и диспропорционированием) и на заключительном этапе восстанавливают чистым водородом при температурах от 900 до 1100 °C.
Разрабатываются более дешёвые, чистые и эффективные промышленные технологии очистки кремния. На 2010 г. к таковым можно отнести технологии очистки кремния с использованием фтора (вместо хлора); технологии предусматривающие дистилляцию монооксида кремния; технологии, основанные на вытравливании примесей, концентрирующихся на межкристаллитных границах.
Содержание примесей в доочищенном кремнии может быть снижено до 10?8—10?6 % по массе.
Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым.
В России технический кремний производится «ОК Русал» на заводах в г. Каменск-Уральский (Свердловская область) и г. Шелехов (Иркутская область); доочищенный по хлоридной технологии кремний производит группа «Nitol Solar» на заводе в г. Усолье-Сибирское.
6. Физические свойства
Кристаллическая структура кремния
7. Электрофизические свойства
Элементарный кремний в монокристаллической форме является непрямозонным полупроводником. Ширина запрещённой зоны при комнатной температуре составляет 1,12 эВ, а при Т = 0 К составляет 1,21 эВ. Концентрация собственных носителей заряда в кремнии при нормальных условиях составляет порядка 1,5·1010 см?3.
На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нём примеси. Для получения кристаллов кремния с дырочной проводимостью, в кремний вводят атомы элементов III-й группы, таких, как бор, алюминий, галлий, индий. Для получения кристаллов кремния с электронной проводимостью, в кремний вводят атомы элементов V-й группы, таких, как фосфор, мышьяк, сурьма.
При создании электронных приборов на основе кремния задействуется преимущественно приповерхностный слой материала (до десятков микрон), поэтому качество поверхности кристалла может оказывать существенное влияние на электрофизические свойства кремния и, соответственно, на свойства готового прибора. При создании некоторых приборов используются приёмы, связанные с модификацией поверхности, например, обработка поверхности кремния различными химическими агентами.
Диэлектрическая проницаемость: 12
Подвижность электронов: 1200—1450 смІ/(В·c).
Подвижность дырок: 500 смІ/(В·c).
Ширина запрещённой зоны 1,205-2,84·10?4·T
Длина свободного пробега электрона: порядка 0,1 см
Все значения приведены для нормальных условий.
8. Химические свойства
При нормальных условиях кремний химически малоактивен и активно реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF4. Такая «неактивность» кремния связана с пассивацией поверхности наноразмерным слоем диоксида кремния, немедленно образующегося в присутствии кислорода, воздуха или воды(водяных паров).
При нагревании до температуры свыше 400—500 °C кремний реагирует с кислородом с образованием диоксида SiO2, процесс сопровождается увеличением толщины слоя диоксида на поверхности, скорость процесса окисления лимитируется диффузией атомарного кислорода сквозь плёнку диоксида.
Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8, в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями (—Si—Si—Si—).
Нижележащие элементы 4-й группы (Ge, Sn, Pb) неограниченно растворимы в кремнии, как и большинство других металлов. При нагревании кремния с металлами могут образовываться силициды. Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000 °C). Наиболее часто образуются металлоподобные силициды составов MeSi, Me3Si2, Me2Si3, Me5Si3 и MeSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.
Особо следует отметить, что с железом кремний образует эвтектическую смесь, что позволяет спекать (сплавлять) эти материалы для образования ферросилициевой керамики при температурах заметно меньших, чем температуры плавления железа и кремния.
Для травления кремния наиболее широко используют смесь плавиковой и азотной кислот. Некоторые специальные травители предусматривают добавку хромового ангидрида и иных веществ. При травлении кислотный травильный раствор быстро разогревается до температуры кипения, при этом скорость травления многократно возрастает.
Для травления кремния могут использоваться водные растворы щелочей. Травление кремния в щелочных растворах начинается при температуре раствора более 60 °C.
9. Кремний в организме человека
Широко известны лечебные свойства кремниевой воды. Кремниевая вода является простым средством пополнения концентрации этого жизненно важного вещества в организме. Одним из наиболее насыщенных кремнием естественным источником является голубая, лечебная, пищевая глина.
Применение в медицине:
Применение в строительстве и легкой промышленности:
Соединения кремния нашли широкое применение как в области высоких технологий, так и в повседневной жизни. Кремнезем и природные силикаты- исходные вещества в производстве стекла, керамики, фарфора, цемента, изделий из бетона, абразивных материалов, и т.д. В сочетании с рядом ингредиентов диоксид кремния применяется в изготовлении волоконно-оптических кабелей. Слюда и асбест используются как электроизоляционные и термоизоляционные материалы.
Силиконы отлично подходят для отделки кожи и текстиля, защищают конечный продукт и оптимизируют производственные процессы.
Различные силиконосодержащие соединения подходят в качестве антипенной присадки для всевозможных типов чистящих средств.
Дисперсии на основе силиконов обеспечивают эффективное поглощение и используются в производстве абсорбентов.
Силиконы можно найти под капотом, в трансмиссии, электронике и электрических системах, в интерьере салона автомобиля или в швах на корпусе. Даже при высокой температуре, кремний защищает от воздействия агрессивных веществ, или выступает в роли перемычки, гасителя вибраций, проводника или изолятора. Все это возможно лишь благодаря тому, что кремний содержащие полимеры обладают потрясающе широким рядом полезных свойств.
Клеи и герметики являются важнейшими продуктами во многих ключевых отраслях. Кремний применяют в различных производственных областях, начиная с производства бумажного, упаковочного клеев, клея для древесины и пола и заканчивая автомобильным сектором и ветряной энергетикой.
Применение в тяжелой промышленности:
Опережающими темпами (около 8% прироста в год) растет применение чистого кремния и его соединений в химической промышленности. В последние десятилетия развитые страны быстро развивают технологии производства гаммы силиконовых (кремнийорганических) материалов, применяемых в производстве пластмасс, лакокрасочной продукции, смазок и т.п.
В цветной металлургии (и химической промышленности) шире применяется металлический магний. Наибольшее применение он находит в качестве лигатуры упрочненных алюминиевых (силумины) и магниевых сплавов.
Некоторое применение находит кремний (как карбид кремния и сложные композиции) в производстве абразивных и твердосплавных изделий и инструментов.
Применение в энергетике, электрике и электронике:
Двойные свойства кремния, такие как электропроводность и изоляционные качества, а также гибкость, позволяют использовать кремний во всей линейке продуктов, таких как приборы освещения, конденсаторы, изоляторы, а также чипы и диэлектрики. Таким образом, кремний изолирует от всевозможных внешних эффектов, таких как грязь, влага, радиация или тепло.
В датчиках бытовой электроники и измерения силиконы обеспечивают надежность и безопасность электрических и чувствительных электронных компонентов оборудования. Они применяются в автомобильной промышленности, легкой промышленности, полупроводниковой отрасли и оптоэлектронике, а также в измерительных приборах и технике управления и освещения.
В резисторах и конденсаторах метил-силиконовые смолы служат эффективным покрытием для предотвращения пожара в случае скачков электричества.
В изоляторах, кабелях и трансформаторах пирогенетический кремнезем демонстрирует превосходную термоизоляцию в широком температурном диапазоне: от комнатной температуры и до более 1000 °C.
Использование кремния в авиационной промышленности обусловлено его способностью генерировать энергию через высококачественные солнечные батареи, а также служить подложкой в сложных микросхемах и защищать корпус кораблей от внешних воздействий.
Кремний (с-Si) в различных своих формах (кристаллический, поликристаллический, аморфный) в настоящее время и в обозримом будущем останется основным материалом микроэлектроники. Это объясняется рядом его уникальных физических и химических свойств, из которых можно выделить следующие:
1. Кремний как исходный материал доступен и дешев, а технология его получения, очистки, обработки и легирования хорошо развита, что обеспечивает высокую степень кристаллографического совершенства изготавливаемых структур. Необходимо специально подчеркнуть, что по этому показателю кремний намного превосходит сталь.
2. Кремний обладает хорошими механическими свойствами. По значению модуля Юнга кремний приближается к нержавеющей стали и намного превосходит кварц и различные стекла. По твердости кремний близок к кварцу и почти вдвое превосходит железо. Монокристаллы кремния имеют предел текучести, который в три раза больше, чем у нержавеющей стали. Однако при деформации он разрушается без видимых изменений размеров, тогда как металлы обычно претерпевают пластическую деформацию. Причины разрушения кремния связаны со структурными дефектами кристаллической решетки, расположенными на поверхности монокристаллов кремния.
Полупроводниковая промышленность успешно решает проблему высококачественной обработки поверхности кремния, так что зачастую кремниевые механические компоненты (например, упругие элементы в датчиках давления) превосходят по прочности сталь.
Микроэлектронная технология изготовления кремниевых приборов основана на применении тонких слоев, создаваемых ионной имплантацией или термической диффузией атомов легирующей примеси, что в сочетании с методами вакуумного осаждения металлов на кремниевую поверхность оказалось весьма удобно для целей миниатюризации изделий.
Кремниевые микроэлектронные приборы изготавливаются по групповой технологии. Это означает, что все производственные процессы осуществляются для целой кремниевой пластины, которая содержит несколько сотен отдельных кристаллов («чипов»). И только на последнем этапе изготовления пластина разделяется на кристаллы, которые далее используются при сборке отдельных приборов, что в итоге резко снижает их себестоимость.
Для воспроизведения размеров и форм структур кремниевых приборов используется метод фотолитографии, обеспечивающий высокую точность изготовления.
2. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
3. Металлический кремний в ийолитах Горячегорского массива, Петрология обыкновенных хондритов
Размещено на Allbest.ru
Подобные документы
Строение атома кремния, его основные химические и физические свойства. Распространение силикатов и кремнезема в природе, использование кристаллов кварца в промышленности. Методы получения чистого и особо чистого кремния для полупроводниковой техники.
реферат [243,5 K], добавлен 25.12.2014
Второй по распространенности (после кислорода) элемент земной коры. Простое вещество и элемент кремний. Соединения кремния. Области применения соединений кремния. Кремнийорганические соединения. Кремниевая жизнь.
реферат [186,0 K], добавлен 14.08.2007
По распространенности в земной коре кремний занимает 2 место после кислорода. Металлический кремний и его соединения нашли применение в различных областях техники. В виде легирующих добавок в производствах различных марок сталей и цветных металлов.
курсовая работа [55,0 K], добавлен 04.01.2009
Кремний — элемент главной подгруппы четвертой группы третьего периода периодической системы химических элементов Д.И. Менделеева; распространение в природе. Разновидности минералов на основе оксида кремния. Области применения соединений кремния; стекло.
презентация [7,3 M], добавлен 16.05.2011
Химические свойства простых веществ. Общие сведения об углероде и кремнии. Химические соединения углерода, его кислородные и азотсодержащие производные. Карбиды, растворимые и нерастворимые в воде и разбавленных кислотах. Кислородные соединения кремния.
реферат [801,5 K], добавлен 07.10.2010