какое строение имеют атомы металлов

Строение атомов металлов и их особенности

Общие сведения о строении металлов

Металлы можно охарактеризовать при помощи нескольких свойств, которые будут общими для всех элементов. К таким характеристикам следует отнести высокую электрическую проводимость и теплопроводность, пластичность, благодаря которой металлы можно подвергать ковке, прокатке, штамповке или вытягиванию в проволоку, металлический блеск и непрозрачность.

В зависимости от температуры кипения все металлы подразделяют на тугоплавкие (Tкип> 1000 o С) и легкоплавкие (Tкип o С). Примером тугоплавких металлов может быть – Au, Cu, Ni, W, легкоплавких – Hg, K, Al, Zn.

Электронное строение металлов и их особенности

Атомы металлов, также как, и неметаллов состоят из положительно заряженного ядра внутри которого находятся протоны и нейтроны, а по орбитам вокруг него движутся электроны. Однако, по сравнению с неметаллами, атомные радиусы металлов намного больше. Это связано с тем, что валентные электроны атомов металлов (электроны внешнего энергетического уровня) расположены на значительном удалении от ядра и, как следствие, связаны с ним слабее. По этой причине металлы характеризуются низкими потенциалами ионизации и легко отдают электроны (являются восстановителями в ОВР) при образовании химической связи.

Все металлы за исключением ртути представляют собой твердые вещества с атомной кристаллической решеткой. Рассмотрим строение металлов в кристаллическом состоянии. В атомах металлов имеются «свободные» электроны (электронный газ), которые могут перемещаться по кристаллу даже под действием слабых электрических полей, что обусловливает высокую электропроводимость металлов.

Примеры решения задач

ЗаданиеПри взаимодействии 6,0 г металла с водой выделилось 3,36 л водорода (н.у.). Определите этот металл, если он в своих соединениях двухвалентен.
РешениеЗапишем уравнение реакции растворения металла в воде. Поскольку металл двухвалентен, его реакция с водой будет описываться уравнением следующего вида:

Согласно уравнению реакции:

N (Ме) =n (Н2) = 3,36/22,4 = 0,15 моль.

Найдем относительную атомную массу металла:

Ar(Ме) = m / n= 6,0/0,15 = 40 г/моль

Следовательно, этот металл — кальций.

ЗаданиеПри действии на смесь меди и железа массой 20 г избытком соляной кислоты выделилось 5,6 л газа (н.у.). Определить массовые доли металлов в смеси.
РешениеИзвестно, что медь не растворяется в соляной кислоте, поскольку стоит в ряду активности металлов после водорода, т.е. выделение водорода происходит только в результате взаимодействия хлороводородной кислоты с железом.

Запишем уравнение реакции:

Найдем количество вещества водорода:

Согласно уравнению реакции n(H2) : n(Fe) = 1:1, т.е.n(H2) = n(Fe) = 0,25 моль. Тогда масса железа будет равна (молярная масса – 56 г/моль):

Рассчитаем массовые доли металлов в смеси:

ωFe = 14 / 20 × 100% = 0,7 × 100% = 70%.

Источник

Металлы в периодической системе. Строение атомов-металлов. Общая характеристика металлов

какое строение имеют атомы металлов

Металлы в периодической системе. Строение атомов-металлов. Общая характеристика металлов.

Положение металлов в периодической системе

Если в таблице Д. И. Менделеева провести диагональ от бора к астату, то в главных подгруппах под диагональю окажутся атомы-металлы, а в побочных подгруппах все элементы ― металлы. Элементы, расположенные вблизи диагонали, обладают двойственными свойствами: в некоторых своих соединениях ведут себя как металлы; в некоторых ― как неметаллы.

Строение атомов металлов

В периодах и главных подгруппах действуют закономерности в изменении металлических свойств.

Атомы многих металлов имеют 1, 2 или 3 валентных электрона, например:

Na (+ 11): 1S2 2S22p6 3S1

Са (+ 20): 1S2 2S22p6 3S23p63d0 4S2

Свойства атомов–металлов находятся в периодической зависимости от их местоположения в таблице Д. И. Менделеева.

какое строение имеют атомы металлов

В ГЛАВНОЙ ПОДГРУППЕ:

· Число электронов на внешнем слое не изменяется.

· Радиус атома увеличивается

· Восстановительные свойства усиливаются.

· Металлические свойства усиливаются.

· Заряды ядер атомов увеличиваются.

· Радиусы атомов уменьшаются.

· Число электронов на внешнем слое увеличивается.

· Восстановительные свойства уменьшаются.

· Металлические свойства ослабевают.

Строение кристаллов металлов

Большинство твердых веществ существует в кристаллической форме: их частицы расположены в строгом порядке, образуя регулярную пространственную структуру ― кристаллическую решетку.

Кристалл ― твердое тело, частицы которого (атомы, молекулы, ионы) расположены в определенном, периодически повторяющемся порядке (в узлах). При мысленном соединении узлов линиями образуется пространственный каркас ― кристаллическая решетка.

Кристаллические структуры металлов в виде шаровых упаковок

какое строение имеют атомы металлов

а ― медь; б ― магний; в ― α-модификация железа

Атомы металлов стремятся отдать свои внешние электроны. В куске металла, слитке или металлическом изделии атомы металла отдают внешние электроны и посылают их в этот кусок, слиток или изделие, превращаясь при этом в ионы. «Оторвавшиеся» электроны перемещаются от одного иона к другому, временно снова соединяются с ними в атомы, снова отрываются, и этот процесс происходит непрерывно. Металлы имеют кристаллическую решетку, в узлах которой находятся атомы или ионы (+); между ними находятся свободные электроны (электронный газ). Схему связи в металле можно отобразить так:

где n ― число внешних электронов, участвующих в связи (у Na ― 1 ē, у Са ― 2 ē, у Al ― 3 ē).

Наблюдается этот тип связи в металлах ― простых веществах-металлах и в сплавах.

Металлическая связь ― это связь между положительно заряженными ионами металлов и свободными электронами в кристаллической решетке металлов.

Металлическая связь имеет некоторое сходство с ковалентной, но и некоторое отличие, поскольку металлическая связь основана на обобществлении электронов (сходство), в обобществлении этих электронов принимают участие все атомы (отличие). Именно поэтому кристаллы с металлический связью пластичны, электропроводны и имеют металлический блеск. Однако в парообразном состоянии атомы металлов связаны между собой ковалентной связью, пары металлов состоят из отдельных молекул (одноатомных и двухатомных).

Общая характеристика металлов

Способность атомов отдавать электроны (окисляться)

Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au

Взаимодействие с кислородом воздуха

Быстро окисляются при обычной температуре

Медленно окисляются при обычной температуре или при нагревании

Взаимодействие с водой

При обычной температуре выделяется Н2 и образуется гидроксид

При нагревании выделяется Н2

Н2 из воды не вытесняют

Взаимодействие с кислотами

Вытесняют Н2 из разбавленных кислот

Не вытесняют Н2 из разбавленных кислот

Реагируют с конц. и разб. HNO3 и с конц. H2SO4 при нагревании

С кислотами не реагируют

Нахождение в природе

Только в соединениях

В соединениях и в свободном виде

Главным образом в свободном виде

Восстановлением углем, оксидом углерода(2), алюмотермия, или электролиз водных растворов солей

Способность ионов присоединять электроны (восстанавливаться)

Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au

Электрохимический ряд напряжений металлов. Физические и химические свойства металлов

Общие физические свойства металлов

Общие физические свойства металлов определяются металлической связью и металлической кристаллической решеткой.

Механическое воздействие на кристалл металла вызывает смещение слоев атомов. Так как электроны в металле перемещаются по всему кристаллу, то разрыва связей не происходит. Пластичность уменьшается в ряду Au, Ag, Cu, Sn, Pb, Zn, Fe. Золото, например, можно прокатывать в листы толщиной не более 0,001 мм, которые используют для позолоты различных предметов. Алюминиевая фольга появилась сравнительно недавно и раньше чай, шоколад поковали в фольгу из олова, которая так и называлась ― станиоль. Однако не обладают пластичностью Mn и Bi: это хрупкие металлы.

Металлический блеск, который в порошке теряют все металлы, кроме Al и Mg. Самые блестящие металлы ― это Hg (из нее изготовляли в средние века знаменитые «венецианские зеркала»), Ag (из него теперь с помощью реакции «серебряного зеркала» изготовляют современные зеркала). По цвету (условно) различают металлы черные и цветные. Среди последних выделим драгоценные ― Au, Ag, Pt. Золото ― металл ювелиров. Именно на его основе изготовляли замечательные пасхальные яйца Фаберже.

Металлы звенят, и это свойство используется для изготовления колокольчиков (вспомните Царь-колокол в Московском Кремле). Самые звонкие металлы ― это Au, Ag, Cи. Медь звенит густым, гудящим звоном ― малиновым звоном. Это образное выражение не в честь ягоды-малины, а в честь голландского города Малина, где выплавлялись первые церковные колокола. В России потом русские мастера стали лить колокола даже лучшего качества, а жители городов и поселков жертвовали золотые и серебряные украшения, чтобы отливаемый для храмов колокол звучал лучше. В некоторых русских ломбардах определяли подлинность принимаемых на комиссию золотых колец по звону золотого обручального кольца, подвешенного на женском волосе (слышен очень долгий и чистый высокий звук).

При нормальных условиях все металлы, кроме ртути Hg, ― твердые вещества. Самый твердый из металлов ― хром Cr: он царапает стекло. Самые мягкие ― щелочные металлы, они режутся ножом. Щелочные металлы хранят с большими предосторожностями ― Na ― в керосине, а Li ― в вазелине из-за своей легкости, керосин ― в стеклянной баночке, баночка ― в асбестовой крошке, асбест ― в жестяной баночке.

Хорошая электрическая проводимость металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов приобретают направленное движение от отрицательного полюса к положительному. С повышением температуры усиливаются колебания атомов (ионов), что затрудняет направленное движение электронов и тем самым приводит к уменьшению электрической проводимости. При низких же температурах колебательное движение, наоборот, сильно уменьшается и электрическая проводимость резко возрастает. Вблизи абсолютного нуля металлы проявляют сверхпроводимость. Наибольшей электрической проводимостью обладают Ag, Cu, Au, Al, Fe; худшие проводники ― Hg, Pb, W.

При обычных условиях теплопроводность металлов изменяется в основном в такой же последовательности, как их электрическая проводимость. Теплопроводность обусловливается высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры в массе металла. Наибольшая теплопроводность ― у серебра и меди, наименьшая ― у висмута и ртути.

Плотность металлов различна. Она тем меньше, чем меньше атомная масса элемента-металла и чем больше радиус его атома. Самый легкий из металлов ― литий (плотность 0,53 г/см3), самый тяжелый ― осмий (плотность 22,6 г/см3). Металлы с плотностью меньше 5 г/см3 называются легкими, остальные ― тяжелыми.

Понятие аллотропии металлов на примере олова

Некоторые металлы имеют аллотропные модификации.

Например, олово различают на:

· α-олово, или серое олово («оловянная чума» ― превращение обычного β-олова в α-олово при низких температурах стало причиной гибели экспедиции Р. Скотта к Южному полюсу, который потерял все горючее, так как оно хранилось в баках, запаянных оловом), устойчиво при t

Источник

Взаимо с кислородом

Мно­гие ме­тал­лы могут всту­пать в ре­ак­цию с кис­ло­ро­дом. Обыч­но про­дук­та­ми этих ре­ак­ций яв­ля­ют­ся ок­си­ды, но есть и ис­клю­че­ния, о ко­то­рых вы узна­е­те на сле­ду­ю­щем уроке. Рас­смот­рим вза­и­мо­дей­ствие маг­ния с кис­ло­ро­дом.

Маг­ний горит в кис­ло­ро­де, при этом об­ра­зу­ет­ся оксид маг­ния:

какое строение имеют атомы металлов

Рис. 1. Го­ре­ние маг­ния в кис­ло­ро­де

Атомы маг­ния от­да­ют свои внеш­ние элек­тро­ны ато­мам кис­ло­ро­да: два атома маг­ния от­да­ют по два элек­тро­на двум ато­мам кис­ло­ро­да. При этом маг­ний вы­сту­па­ет в роли вос­ста­но­ви­те­ля, а кис­ло­род – в роли окис­ли­те­ля.

Обратите внимание. Серебро, золото и платина с кислородом не реагируют.

2. Взаимодействие с галогенами, образуются галогениды

Для ме­тал­лов ха­рак­тер­на ре­ак­ция с га­ло­ге­на­ми. Про­дук­том такой ре­ак­ции яв­ля­ет­ся га­ло­ге­нид ме­тал­ла, на­при­мер, хло­рид.

какое строение имеют атомы металлов

Рис. 2. Го­ре­ние калия в хлоре

Калий сго­ра­ет в хлоре об­ра­зо­ва­ни­ем хло­ри­да калия:

Два атома калия от­да­ют мо­ле­ку­ле хлора по од­но­му элек­тро­ну. Калий, по­вы­шая сте­пень окис­ле­ния, иг­ра­ет роль вос­ста­но­ви­те­ля, а хлор, по­ни­жая сте­пень окис­ле­ния,- роль окис­ли­те­ля

3. Взаимодействие с серой

какое строение имеют атомы металлов

Рис. 3. Вза­и­мо­дей­ствие же­ле­за с серой

Ме­тал­лы также могут ре­а­ги­ро­вать с во­до­ро­дом, азо­том и дру­ги­ми неме­тал­ла­ми при опре­де­лен­ных усло­ви­ях.

4. Взаимодействие с водой

Металлы по — разному реагируют с водой:

какое строение имеют атомы металлов

Помните.

Алюминий реагирует с водой подобно активным металлам, образуя основание:

Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe3O4 и водород: 3Fe+4H +1 2O −2 → Fe +2 O −2 ⋅Fe +3 2O −2 3 + 4H2

5. Взаимодействие с кислотами

Металлы особо реагируют с серной концентрированной и азотной кислотами:

1)пассивируются на холоде;

2) при нагревании → SO2

Внимание!

Pt, Au + H2SO4 (конц.) реакции нет

Al, Fe, Cr + H2SO4 (конц.) холодная пассивация

Видео

Химические свойства металлов

Металлы легко отдают электроны, т. е. являются восстановителями. Поэтому они легко реагируют с окислителями.

Таким образом, металлы реагируют с неметаллами. В таких реакциях неметаллы, принимая электроны, приобретают обычно НИЗШУЮ степень окисления.

Рассмотрим пример. Пусть алюминий реагирует с серой:

какое строение имеют атомы металлов

Вопрос. Какой из этих химических элементов способен только отдавать электроны? Сколько электронов?

Алюминий — металл, имеющий на внешнем уровне 3 электрона (III группа!), поэтому он отдаёт 3 электрона:

какое строение имеют атомы металлов

Поскольку атом алюминия отдает электроны, атом серы принимает их.

Вопрос. Сколько электронов может принять атом серы до завершения внешнего уровня? Почему?

У атома серы на внешнем уровне 6 электронов (VI группа!), следовательно, этот атом принимает 2 электрона:

какое строение имеют атомы металлов

Таким образом, полученное соединение имеет состав:

какое строение имеют атомы металлов

В результате получаем уравнение реакции:

какое строение имеют атомы металлов

Задание 8.5. Составьте, рассуждая аналогично, уравнения реакций:

Составляя уравнения реакций, помните, что атом металла отдаёт все внешние электроны, а атом неметалла принимает столько электронов, сколько их не хватает до восьми.

Названия полученных в таких реакциях соединений всегда содержат суффикс ИД:

какое строение имеют атомы металлов

Корень слова в названии происходит от латинского названия неметалла (см. урок 2.4).

Металлы реагируют с растворами кислот (см. урок 2.2). При составлении уравнений подобных реакций и при определении возможности такой реакции следует пользоваться рядом напряжений (рядом активности) металлов:

какое строение имеют атомы металлов

Металлы, стоящие в этом ряду до водорода, способны вытеснять водород из растворов кислот:

какое строение имеют атомы металлов

какое строение имеют атомы металлов

Задание 8.6. Составьте уравнения возможных реакций:

Все эти металлы в полученных соединениях двухвалентны.

Реакция металла с кислотой возможна, если в результате её получается растворимая соль. Например, магний практически не реагирует с фосфорной кислотой, поскольку его поверхность быстро покрывается слоем нерастворимого фосфата:

какое строение имеют атомы металлов

Металлы, стоящие после водорода, могут реагировать с некоторыми кислотами, но водород в этих реакциях не выделяется:

какое строение имеют атомы металлов

Задание 8.7. Какой из металлов — Ва, Mg, Fе, Рb, Сu — может реагировать с раствором серной кислоты? Почему? Составьте уравнения возможных реакций.

Металлы реагируют с водой, если они активнее железа (железо также может реагировать с водой). При этом очень активные металлы (Li – Al) реагируют с водой при нормальных условиях или при небольшом нагревании по схеме:

какое строение имеют атомы металлов

где х — валентность металла.

Задание 8.8. Составьте уравнения реакций по этой схеме для К, Nа, Са. Какие ещё металлы могут реагировать с водой подобным образом?

Вопрос. Можно ли хранить в алюминиевой посуде кислые щи, компот?

Менее активные металлы, которые стоят в ряду напряжений после алюминия, реагируют с водой в сильно измельчённом состоянии и при сильном нагревании (выше 100 °C) по схеме:

какое строение имеют атомы металлов

Металлы, менее активные, чем железо, с водой не реагируют!

Металлы реагируют с растворами солей. При этом более активные металлы вытесняют менее активный металл из раствора его соли:

какое строение имеют атомы металлов

Задание 8.9. Какие из следующих реакций возможны и почему:

Составьте уравнения возможных реакций. Для невозможных поясните, почему они невозможны.

Следует отметить (!), что очень активные металлы, которые при нормальных условиях реагируют с водой, не вытесняют другие металлы из растворов их солей, поскольку они реагируют с водой, а не с солью:

какое строение имеют атомы металлов

А затем полученная щёлочь реагирует с солью:

какое строение имеют атомы металлов

Поэтому реакция между сульфатом железа и натрием НЕ сопровождается вытеснением менее активного металла:

какое строение имеют атомы металлов

какое строение имеют атомы металлов

Электронное строение металлов и их особенности

Атомы металлов, также как, и неметаллов состоят из положительно заряженного ядра внутри которого находятся протоны и нейтроны, а по орбитам вокруг него движутся электроны. Однако, по сравнению с неметаллами, атомные радиусы металлов намного больше. Это связано с тем, что валентные электроны атомов металлов (электроны внешнего энергетического уровня) расположены на значительном удалении от ядра и, как следствие, связаны с ним слабее. По этой причине металлы характеризуются низкими потенциалами ионизации и легко отдают электроны (являются восстановителями в ОВР) при образовании химической связи.

Все металлы за исключением ртути представляют собой твердые вещества с атомной кристаллической решеткой. Рассмотрим строение металлов в кристаллическом состоянии. В атомах металлов имеются «свободные» электроны (электронный газ), которые могут перемещаться по кристаллу даже под действием слабых электрических полей, что обусловливает высокую электропроводимость металлов.

Физические свойства

Металлы отличаются от неметаллов характерными физическими свойствами:

Благодаря пластичности и плавке металлы могут образовывать сплавы – смеси химических элементов. Большую часть сплавов составляют металлы, остальное – случайные примеси и специально вводимые вещества. Сплавы отличаются высокой прочностью, упругостью, хрупкостью. Широко применяются сплавы на основе железа (чёрные металлы) и алюминия (цветные металлы).

Высокую электропроводность обуславливают свободные электроны, перемещающиеся по кристаллической решётке под действием электрических полей. При нагревании электропроводность уменьшается.

Тест по теме

/10 Вопрос 1 из 10 Чем объясняются восстановительные свойства металлов? Наличием р-орбитали Наличием свободных электронов в кристаллической решётке Большим расстоянием между ядром и электронами Небольшим расстоянием между ядром и электронами Начать тест

Источник

Ищем педагогов в команду «Инфоурок»

Тема: Металлы, особенности строения атомов, способы

получения и свойства

1. Особенности строения атомов металлов.

2. Способы получения металлов.

3. Физические свойства металлов.

4. Химические свойства металлов.

1. Особенности строения атомов металлов

Особенности строения атомов металлов:

небольшое число электронов на внешнем энергетическом уровне (как правило, один-три электрона). Исключение — атомы р-элементов IV-VI групп;

малые заряды ядер и большие радиусы атомов по сравнению с атомами неметаллов данного периода;

сравнительно слабая связь валентных электронов с ядром;

низкие значения электроотрицательности.

Однако способность отдавать электроны проявляется у металлов неодинаково. В периодах с увеличением зарядов ядер атомов уменьшаются их радиусы, увеличивается число электронов на внешнем уровне и усиливается связь валентных электронов с ядром. Поэтому в периодах слева направо восстановительная способностъ атомов металлов уменьшается.

В главных подгруппах с возрастанием атомных номеров элементов увеличиваются радиусы их атомов и уменьшается притяжение (валентных электронов к ядру. Поэтому в главных подгруппах сверху вниз восстановительная активность атомов металлов возрастает. Следовательно, наиболее активными восстановителями являются щелочные и щелочно-земельные металлы.

Только некоторые металлы (золото, платина) находятся в природе в виде простых веществ (в самородном состоянии). Металлы, расположенные в электрохимическом ряду напряжений между оловом и золотом, встречаются как в виде простых веществ, так и в составе соединений. Большинство же металлов находятся в природе в виде соединений — оксидов, сульфидов, карбонатов и т. д. Распространенность металлов в природе уменьшается в ряду:

Содержание в земной коре (массовая доля, %) уменьшается

Получение металлов из их соединений — задача металлургии. Металлургия — наука о промышленном получении металлов из природного сырья. Различают черную (производство железа и его сплавов) и цветную (производство всех остальных металлов сплавов) металлургию. Любой металлургический процесс является процессом восстановления ионов металла различными восстановителями:

В зависимости от условий проведения процесса восстановления различают несколько способов получения металлов.

2. Способы получения металлов

С или СО (карботермия)

Сульфиды предварительно обжигают:

2 ZnS + 30 2 = 2 ZnO + 2 S 0 2

TiCI 4 + 2Mg = Ti + 2MgCl 2

H 2 (водородотермия)

Оксиды активных металлов (МgО, СаО, А1 2 0 3 и др.) водородом не восстанавливаются

Cu, Ni, W, Fe, Mo, Cd, Pb

Электрометаллургия – восстановление электрическим током

2 NaCl электролиз 2 Na + Cl 2

Гидрометаллургия – восстановление из растворов солей

Металл, входящий в состав руды, переводят в раствор, затем восстанавливают более активным металлом:

Задания для самостоятельной работы

1. Атому магния в степени окисления +2 соответствует электронная конфигурация:

а ) 1s 2 2s 2 2 р 6 3s 2 3 р 6 ; в ) 1s 2 2s 2 2 р 4 ;

б) 1 s 2 2 s 2 2р 6 ; г ) 1 s 2 2 s 2 2р 6 3 s 2 ;

2. При частичном восстановлении водородом 30 г оксида кобальта. В получили смесь оксида и металла массой 26,8 г. Определите количество вещества водорода, вступившего в реакцию, и массовую долю кобальта в полученной смеси.

3. При электролизе раствора сульфата меди ( II ) в растворе образовалась кислота (около анода), на нейтрализацию которой затрачен раствор объемом 16 см (р = 1,05 г/см 3 ) с массовой долей гидроксида калия 6%. Вычислите массу меди, которая выделилась на катоде.

4. Для восстановления марганца из оксида марганца(1\/) путем алюмотермии было смешано 10,8 г алюминия и 26,2 г оксида. Определите, какое из исходных веществ осталось и какова его масса.

3. Физические свойства металлов

Общие свойства металлов:

2). Металлический блеск и непрозрачность металлов — результат отражения световых лучей.

3). Электро- и теплопроводность обусловлены наличием в металлических решетках свободных электронов.

С повышением температуры электропроводность металлов уменьшается, а с понижением температуры — увеличивается. Около абсолютного нуля для многих металлов характерно явление сверхпроводимости.

4). Металлы обладают ковкостью и пластичностью . По определению М. В. Ломоносова, «металлом называется светлое тело, которое ковать можно». Металлы легко прокатываются в листы, вытягиваются в проволоку, поддаются ковке, штамповке, прессованию.

Специфические физические свойства металлов:

3). из металлов самые мягкие — щелочные (их можно резать ножом), самый твердый — хром ( царапает стекло ).

4). по отношению к магнитным полям металлы подразделяют на три группы:

4. Химические свойства металлов

Как восстановители металлы взаимодействуют с неметаллами, водой, растворами щелочей, кислот и солей.

1). Взаимодействие металлов с простыми веществами — неметаллами

Металлы при определенных условиях взаимодействуют с неметаллами, например с кислородом образуют оксиды:

Из щелочных металлов только литий сгорает на воздухе с образованием оксида:

Основной продукт окисления натрия — пероксид:

При горении других щелочных металлов образуются супероксиды, например:

Оксиды натрия и калия могут быть получены при нагревании смеси пероксида с избытком металла в отсутствие кислорода:

На реакции пероксида натрия с оксидом углерода (1 V ) основана регенерация воздуха в изолированных помещениях (например, на подводных лодках):

При нагревании металлы реагируют с другими неметаллами:

Если металл проявляет переменную степень окисления, то активные неметаллы (фтор, хлор, бром, кислород) окисляют его до более высокой степени окисления, в которой он образует устойчивое в данных условиях соединение, а менее активные — до более низкой степени окисления. Так, железо проявляет в соединениях степени окисления +2 и +3 (иногда +6), из них +3 наиболее устойчива. В связи с этим при взаимодействии железа с хлором, бромом оно окисляется до степени окисления +3, а при взаимодействии с серой или иодом — до степени окисления +2:

2Fe + ЗС 1 2 = 2 FeCl 3 Fe + S = FeS

Щелочные и щелочно-земельные металлы при нагревании вступают в реакцию с водородом, образуя гидриды. Атомы водорода в данных соединениях имеют отрицательную степень окисления:

2 Na + Н 2 = 2 NaH Ва + Н 2 = BaH 2

Гидриды представляют собой кристаллические тугоплавкие солеобразные вещества белого цвета. Они активные восстановители за счет водорода в минимальной степени окисления (-1). Так, гидриды горят в атмосфере хлора, кислорода, энергично разлагаются водой с образованием щелочи и выделением водорода:

Гидриды применяют для получения водорода в полевых условиях (для водородной сварки), восстановления металлов из их оксидов, а также в органическом синтезе.

2). Взаимодействие металлов со сложными веществами

Если химические реакции протекают в водных растворах, то восстановительная активность металла определяется его положением в электрохимическом ряду напряжений.

А). Взаимодействие с водой

С водой при обычной температуре реагируют металлы, которые в ряду напряжений стоят до водорода (металл вытесняет водород из воды) и гидроксиды которых растворимы в воде (на поверхности металла не образуется защитная пленка). К таким металлам относятся щелочные и щелочно-земельные металлы:

2 Na + 2Н 2 0 = 2 NaOH + Н 2

Fe + Н 2 0 (так как Fe ( OH ) 2 нерастворим в воде)

При нагревании с водой или парами воды взаимодействуют металлы от магния до олова. Реакция протекает с образование» гидроксидов или оксидов и выделением водорода:

Б). Взаимодействие с щелочами

С растворами щелочей взаимодействуют металлы, которые в ряду напряжений стоят до водорода (металл вытесняет водород из воды), а их оксиды и гидроксиды амфотерны (оксидные и гидроксидные пленки растворяются в растворе щелочи). К таким металлам относятся цинк, алюминий, олово, бериллий, свинец и некоторые другие. Процесс протекает в три стадии:

1) растворение в щелочи пленки амфотерного оксида, которая покрывает поверхность металла;

2) взаимодействие металла, освобожденного от защитной оксидной пленки, с водой с образованием нерастворимого амфотерного гидроксида;

3) растворение образовавшейся пленки гидроксида в растворе щелочи.

А1 2 0 3 + 2 NaOH + ЗН 2 0 = 2 Na [ Al ( OH ) 4 ]

2А1(ОН) 3 + 2 NaOH = 2 Na [ Al ( OH ) 4 )

Если просуммировать два последних уравнения, то получим уравнение реакции алюминия с раствором щелочи:

2А1 + 2 NaOH + 6Н 2 0 = 2 Na [ Al ( OH ) 4 ) + ЗН 2

Таким образом, при взаимодействии металла с раствором щелочи роль последней сводится к снятию с поверхности металла оксидной и гидроксидной пленки, а металл взаимодействует с водой.

Эти же металлы реагируют со щелочами при нагревании:

Металлы, высшие оксиды которых обладают амфотерными или кислотными свойствами, реагируют с щелочными расплава ми окислителей. В качестве окислителей используют нитраты калия или натрия, хлорат калия и др.

При взаимодействии с щелочными расплавами окислителей металлы образуют соли анионного типа, в которых, как правило, проявляют высшую степень окисления, например: +6

Аналогичные продукты образуются и при взаимодействии щелочных расплавов окислителей с оксидами металлов, в которых металлы проявляют промежуточную степень окисления: +3 +6

Fe 2 0 3 + КСЮ3 + 4КОН = 2 K 2 Fe 0 4 + КС1 + 2Н 2 0

В). Взаимодействие с кислотами

С разбавленными кислотами, которые проявляют окислительные свойства за счет ионов водорода (разбавленная серная, фосфорная, сернистая, все бескислородные и органические кислоты и др.), реагируют металлы:

расположенные в ряду напряжений до водорода (эти металлы способны вытеснять водород из кислоты);

образующие с этими кислотами растворимые соли (на поверхности этих металлов не образуется защитная солевая пленка).

В результате реакции образуются растворимые соли и выделяется водород:

Сu + H 2 S 0 4 (так как С u стоит после Н 2 )

Pb + H 2 S 0 4 (так как PbS 0 4 нерастворим в воде)

С кислотами-окислителями — азотной и концентрированной серной, которые, как вам известно, проявляют окислительные свойства за счет атомов серы и азота в высших степенях окисления, взаимодействуют практически все металлы, расположенные в ряду напряжений как до, так и после водорода, кроме золота и платины. Так как окислителями в этих кислотах являются ионы кислотных остатков, а не ионы водорода, то прн их взаимодействии с металлами не выделяется водород. Металл под действием данных кислот окисляется до характерной (устойчивой) степени окисления и образует соль, а продукт восстановления кислоты зависит от активности металла и от степени разбавления кислоты.

активный металл Li — Zn Соль + H 2 S + Н 2 0

H 2 S 0 4 (конц.) металл средней активности Cd — Pb Соль + S + Н 2 0

неактивный металл (после Н 2 ) Соль + S 0 2 + Н 2 0

и Fe (при нагревании)

HNO 3 ( (конц.) независимо от активности металла Соль + N 0 2 + Н 2 0

активный металл Li — Zn Соль + N 2 + Н 2 0

HN 0 3 (разб.) металл средней активности Fe — Pb Соль + N 2 O + Н 2 0

неактивный металл (после Н 2 ) Соль + N 0 + Н 2 0

и Fe (при нагревании)

HN 0 3 (оч. разб.) активный металл Соль+ NH 4 N 0 3 + H 2 0

На основании схемы составим уравнения реакций меди и магния с концентрированной серной кислотой:

Следует иметь в виду, что на схемах указаны продукты, содержание которых максимально среди возможных продуктов восстановления кислот. Так, при взаимодействии серной кислоты с цинком или магнием в зависимости от концентрации кислоты могут образоваться различные продукты восстановления серной кислоты:

3 H 2 S + H 2 S 0 4 = 4 S + 4Н 2 0 (менее концентрированная H 2 S 0 4 )

Н 2 S + 3 H 2 S 0 4 = 4 S 0 2 + 4 H 2 0 (более концентрированная H 2 S 0 4 )

Степень восстановления азотной кислоты при взаимодействии с одним и тем же металлом, например магнием или цинком, также определяется ее концентрацией. Концентрированная кислота восстанавливается до оксида азота ( IV ), так как низшие оксиды, образованные в ходе реакции, окисляются кислотой. По мере ее разбавления возрастает возможность образования продукта наиболее полного восстановления:

Некоторые металлы ( железо, алюминий, хром) не взаимодействуют с концентрированной серной и азотной кислотами при обычной температуре, так как происходит пассивация металла. Это явление связано с образованием на поверхности металла тонкой, но очень плотной оксидной пленки, которая и защищает металл. По этой причине концентрированную азотную и серную кислоты транспортируют в железных емкостях.

Д).Взаимодействие с растворами солей

Каждый металл, начиная с магния, вытесняет все следующие за ним в ряду напряжений металлы из растворов их солей:

Fe + CuS 0 4 = FeS 0 4 + С u

Такие металлы, как литий, натрий, калий, кальций, барий. использовать для вытеснения менее активных металлов из водных растворов солей нельзя, так как при обычных условиях они реагируют с водой.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *