какое состояние имеет вода

Состояния воды в природе: условия перехода, необычные факты

какое состояние имеет вода

Удивительная вода: Freepick

Известные человечеству состояния воды не ограничиваются тремя базовыми вариантами, о которых большинство слышало в школе. Как создать горячий лед или сухую воду? Возможно ли наблюдать воду сразу жидкой, твердой и газообразной? Как на эти и многие другие вопросы отвечает наука?

Три состояния воды в природе

Воду как прозрачную жидкость, у которой отсутствует запах и вкус, знают все. Но только ли такой она бывает? Прежде чем ответить на вопрос о том, каковы возможные агрегатные состояния воды, выясним, что такое агрегатное состояние.

В физике под этим понятием подразумевают состояние вещества, обусловленное определенной температурой и давлением. Науке известно:

При этом одно и то же вещество может менять свое состояние в зависимости от условий окружающей среды.

Хорошо известны три агрегатных состояния воды:

Состояние воды прямо связано с температурой. Эта жидкость обладает уникальным свойством: свое жидкое состояние она сохраняет в широком диапазоне от 0 до 100 °С. В верхней точке начинается закипание с постепенным переходом в газообразную фазу. При снижении температуры ниже 0 °С происходит образование льда.

При этом в природе можно часто увидеть, как вода и лед соседствуют друг с другом, а в этом время над ними витает невидимый глазу водяной пар. Благодаря таким удивительным способностям воды происходит ее постоянный круговорот в природе.

какое состояние имеет вода

Жидкое состояние воды: Freepick

Если рассматривать все три состояния воды, то жидкое остается одним из наиболее важных. Жидкая вода служит универсальным растворителем для множества других веществ, является основным компонентом организма человека и средой для протекания всех химических процессов.

Более того, именно у жидкой воды ученым удалось обнаружить дополнительные состояния — «обычная» и «аномальная» вода. Последняя образуется при температуре –63 °С и может находиться в одном из двух состояний:

Две эти жидкости заметно различаются по свойствам, а их плотность отличается на 20%, поэтому они не могут смешиваться между собой. Как ученым удалось уловить эти состояния, ведь хорошо известно, что происходит с водой при замерзании: она переходит в твердую фазу — в лед?

Авторам исследования понадобились специальные приборы. С помощью инфракрасного лазера лед нагревали, при этом образовывалась жидкая вода с высокой плотностью, а давление сохраняли повышенным.

За этим процессом вели наблюдение рентгеновским лазером. Было замечено образование пузырьков «аномальной» воды. Появлялись они на крайне маленький промежуток времени: были видны до 3-х микросекунд.

Эти исследования доказали, что ученым еще далеко не все известно о воде, хотя мы и сталкиваемся с ней ежедневно и ежечасно. Ее свойства продолжают изучать и открывать новые грани.

Состояния воды: необычные факты

какое состояние имеет вода

Твердое состояние воды (лед): Freepick

Ученым оказалось недостаточно трех агрегатных состояний воды, поэтому они изобрели целый ряд необычных вариантов и продолжают работать в этом направлении.

Лед VII (горячий лед)

Для обычного холодного льда используется обозначение «лед Ih». Когда при нормальном давлении снижается температура и вода замерзает, то атомы кислорода в ее молекулах образуют шестигранники.

Если же давление будет возрастать, то можно получить лед VII, атомы которого располагаются в виде куба. Он очень противоречив:

Ученым удалось создать такой лед в лаборатории. Кроме того, он был обнаружен в алмазах, которые нашли в недрах нашей планеты.

Сухая вода

Ее получают путем смешивания обычной воды и двуокиси кремния. Несмотря на то что жидкости в ней 25%, она является сухим веществом. Сахарообразные крупинки внутри содержат воду, а сверху покрыты оксидом кремния.

Сухую воду создали в 1968 для нужд косметологии. Затем о ней забыли, а сейчас рассматривают варианты использования для поглощения углекислого газа, чтобы хранить и транспортировать химикаты.

Сверхзвуковой лед

Этот лед также называют льдом XVIII. Он образуется при очень сильном повышении давления и температурных показателей — до тысяч градусов и миллионов атмосфер. В горячем плотном и черном на виде веществе узнать лед очень трудно.

Получить его экспериментально удалось совсем недавно с применением мощных лазеров, которые создавали ударные волны, мгновенно повышая температуру и давление. При этом происходило разделение атомов водорода и кислорода с параллельным образованием твердых кристаллов.

Сверхкритическая вода

Вода может стать такой из газообразного состояния. Это очень странный пар, который нельзя назвать газом. Образование такой воды происходит при 373 °С и давлении 220 бар. Снова жидкой она уже стать не может. Такая вода способна проходить сквозь твердые вещества, как газы, и быть растворителем подобно жидкости.

Аморфный лед

Этот лед получается при мгновенном охлаждении воды, когда молекулы не кристаллизуются, как следует. Получается своеобразное стекло — очень медленно движущаяся жидкость.

На нашей планете аморфный лед встречается редко, а вот на просторах Вселенной вода часто существует в этом состоянии.

Тройная точка воды

В этой точке вещество одновременно существует как твердое, жидкое и газообразное. Такое специфическое равновесие достигается путем сочетания показаний давления и температуры. Для воды они составляют 0,01 °С и 0,0060366 атмосфер.

Эта точка применяется, когда определяется температура по Кельвину, калибруются термометры и определяются тройные точки для других жидкостей. Из тройной точки воду можно перевести в любое из ее возможных агрегатных состояний.

Горящий лед

Это не чистая вода, а сочетание воды и метана, которое способно гореть, словно бумага. Такой лед образуется в результате естественных процессов в океанских глубинах, в зонах вечной мерзлоты, может засорить нефтепровод или газопровод.

Таковы обычные и нестандартные состояния воды. Природа отменно поработала, чтобы создать такое чудо, но и ученые не остались в стороне. Они до сих пор работают над получением воды в уникальных состояниях.

Узнавайте обо всем первыми

Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.

Источник

Такая разная вода: два жидких агрегатных состояния H2O

какое состояние имеет вода

Основа исследования

Фундаментом для подобного рода исследований стало обнаружение расхождения изотермической сжимаемости и теплоемкости (CP) при переохлаждении воды. Ученые начали поиски объяснений этих странных процессов.

Одна из самых распространенных теорий утверждает, что существует переход жидкость-жидкость (LLT от liquid-liquid transition) в переохлажденной воде между жидкостью высокой плотности (HDL от high-density liquid) и жидкостью низкой плотности (LDL от low-density liquid), который заканчивается в критической точке жидкость-жидкость (LLCP от liquid-liquid critical point) при положительном давлении. Аномальное поведение воды в соответствии с этой теорией объясняется колебаниями, исходящими от LLCP.

Относительно недавно были проведены дополнительные опыты, в ходе которых было обнаружено, что структура переохлажденной воды непрерывно изменяется при охлаждении до 227 К под давлением 1 бар. Это указывает на однофазное поведение без LLT при атмосферном давлении. Следовательно, это подразумевает, что если LLT действительно существует, то LLCP должен находиться при давлении (P) > 1 бар.

Эксперименты по рассеянию нейтронов в воде позволили предположить, что различные фазы HDL и LDL могут быть идентифицированы по их четко определенным положениям пиков в структурном факторе (математическое описание того, как материал рассеивает падающее излучение).

В частности, положение первого пика в О–О рассеянии сильно чувствительно к существованию тетраэдрических структур (LDL) или межузельных молекул между первой и второй оболочками (HDL). Следовательно, наиболее подходящим способом обнаружения LLT в переохлажденной воде может быть отслеживание структуры жидкости с помощью рассеяния рентгеновских лучей или нейтронов. Основная сложность таких опытов заключается в том, что их нужно проводить при разном давлении и очень быстро, пока не произошла кристаллизация.

В данном труде был использован метод компрессии-декомпрессии, когда начальное повышение давления было вызвано нагревом, индуцированным лазерным импульсом. Когда временной масштаб индуцированного лазером высвобождения энергии намного короче, чем время прохождения звука через образец, нагрев является изохорным*, а давление внутри образца значительно возрастает.

Изопроцесс* — термодинамический процесс, когда количество вещества и какой-то параметр его состояния (давление, объем, температура или энтропия) остаются неизменными.

После окончания сверхбыстрого лазерного импульса образец быстро расширяется по мере того, как внутреннее давление уменьшается, приближаясь к значениям давления окружающей среды. Однако, если динамика жидкости достаточно быстрая, чтобы расслабить образец до наступления расширения, квазиравновесное поведение будет наблюдаться во время процесса декомпрессии.

Образцы изучались с помощью рассеяния рентгеновских лучей с разными временными задержками во время декомпрессии. В ходе наблюдений было выявлено резкое изменение структурного фактора, которое указывает на прерывистый LLT. Кроме того была обнаружена кристаллизация льда, происходящая значительно позднее. Это подтверждает, что LLT является метастабильным состоянием и отличается от перехода жидкость-лед.

Результаты исследования

Аморфный лед* получают посредством быстрого охлаждения воды, так что ее молекулы не успевают сформировать кристаллическую решетку (т.е. молекулы расположены случайным образом).

какое состояние имеет вода
Изображение №1

Толщина выбранных для наблюдения образцов варьировалась либо от 35 до 55 мм, либо от 15 до 25 мм. На образец воздействовал инфракрасный импульс с длиной волны 2 мм в течение 100 фс. Импульс увеличивал температуру и возбуждал комбинацию O–H и H–O–H.

После активации ИК импульса началась самопроизвольная декомпрессия, во время которой температура оставалась примерно постоянной, пока через

100 мс охлаждение за счет теплопроводности не стало существенным.

На графике показаны временные задержки для образцов толщиной от 15 до 25 мм, где степень преобразования HDL в LDL была выше, чем у образцов с большей толщиной. Спустя 1 мс соотношение двух компонентов составляет почти 1:1. Это, вероятнее всего, связано с тем, что в более тонких образцах процесс нагрева протекает более равномерно. В более толстых образцах ИК излучение поглощается больше на передней поверхности, чем на задней, что приводит к большему градиенту температур. Две наблюдаемые взаимопревращающие фазы имеют q-положения вблизи HDL и LDL, как и было предсказано на основе экстраполяции данных по зависящему от температуры и давления рассеянию нейтронов водой при более высоких температурах.

Сценарии, показанные на 1D1F, могут быть только в том случае, если образец после ИК импульса был жидкостью, а не аморфным твердым телом, и оставался жидким во время процесса декомпрессии.

Сразу после ИК импульса образец перемещался в точку на фазовой диаграмме, лежащую выше температуры гомогенного образования льда (TH), что соответствует быстрой жидкоподобной диффузии. В этой области вода была метастабильной жидкостью в течение нескольких минут, прежде чем превратилась в кристаллические фазы льда.

Чтобы понять, как сразу после нагрева HDA ИК импульсом возникает жидкоподобная диффузия, ученые метод классической молекулярной динамики для модели воды ST2 (исследование по данной теме доступно по ссылке: Improved simulation of liquid water by molecular dynamics).

Наблюдаемое температурное смещение в 25 К означает, что экспериментальная температура 205 К соответствует

230 К для ST2 воды.

какое состояние имеет вода
Изображение №3

На показано среднеквадратичное смещение (MSD) молекул ST2 как функция времени после быстрого нагревания (при 3000 К/нс) образца HDA. Начиная с 80 К, HDA нагревали до одной из трех различных конечных температур в диапазоне от 200 до 250 К. Если бы была задержка для перехода образца в жидкое состояние, то среднеквадратичное смещение было бы изначально постоянным, а затем линейно увеличивался бы после задержки.

В ходе моделирования системы было обнаружено, что среднеквадратичное смещение увеличивается со временем линейно, как и ожидалось для диффундирующей жидкости. Из этих результатов следует, что в течение 20 пс после быстрого нагрева HDA в системе образуется жидкое состояние. Этот процесс был намного быстрее, чем частичное таяние льда фазы Ih посредством ИК импульса, которое длилось

Тем не менее травление кристаллов, т.е. переход между фазами со значимыми отличиями в структурах до и после, является процессом, требующим активации (т.е. преодоления барьера свободной энергии).

Используемые в опытах образцы льда выдерживали от 0.5 до 5 часов при температуре 115 К, потому они еще до нагрева находились в ультравязком жидком состоянии. Образцы не столкнулись с барьером свободной энергии при нагревании от 115 до 205 К. Это согласуется с тем, что HDA и HDL структурно тесно связаны, и в результате начало быстрой диффузии было моментальным.

Эксперименты и моделирование показали, что жидкостное равновесие системы при 205 К в LDL образовывалось за время в 50-100 раз большее, чем для HDL. Следовательно, если есть возможность достичь жидкостного равновесия в течение нескольких наносекунд, то этого же можно достичь и в течении сотен наносекунд. Если это так, то отдельные фазы с высокой и низкой плотностью, наблюдаемые в субмикросекундном временном масштабе, можно воспринимать как квазиравновесные жидкие фазы.

При учете сценариев, показанных на , должно происходить быстрое преобразование в лед или непрерывное преобразование жидкого состояния. Однако этого не происходило. Образование кристаллического льда могло бы происходить в масштабах времени, более чем на один порядок превышающих преобразование в LDL. Из этого следует, что экспериментальные данные могут быть количественно согласованы только со сценарием, показанным на 1F.

какое состояние имеет вода
Изображение №4

Дабы лучше понять, как происходит образование LLT, были проанализированы отличия в рассеянии для образцов разной толщины (от 35 до 55 мм). Это позволило оценить фракционную заселенность каждой фазы в образце как функцию временной задержки (4A).

На 16.8 нс наблюдается лишь небольшая доля LDL, которая достигала максимума (

40% от общей интенсивности рассеяния) спустя 3 мс. Этот процесс сопровождается соответствующим уменьшением доли HDL. На временной отметке в 3 мс появляется кристаллический лед, который в последствии преобладает по всей системе. Образование льда происходило во временном масштабе, более чем на один порядок превышающем переход от HDL к LDL. Это указывает на то, что LLT, хоть и является метастабильным фазовый переход, он все же отличается от перехода жидкость-лед.

Из-за динамического характера процесса декомпрессии ожидалось, что преобразование HDL в LDL будет происходить в области на графике между линией HDL-LDL сопряжения и пределом метастабильности фазы HDL. В этой области переход должен проявляться в короткие промежутки времени в виде локализованных LDL флуктуаций, за которыми следует зарождение и рост LDL доменов. На (график малоуглового рентгеновского рассеяния, SAXS) отчетливо видны небольшие флуктуации LDL.

Полное преобразование образца в LDL было прервано процессом образования льда. Однако для тонких образцов соотношение HDL:LDL достигало значения 1:1 за 1 мс до появления льда ().

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог

В данном труде ученые установили наличие второго жидкого состояния для воды, возникающего при 205 К. Результаты экспериментов показали, что переход жидкость-жидкость (LLT) происходит в условиях (давление и температура), при которых обычно происходит только кристаллизация.

Кроме того, наблюдаемый для LLT временной масштаб (от наносекунд до микросекунд), согласуется с предыдущей экспериментальной оценкой, основанной на экстраполяциях от 10 мс при 174 К до наносекунд и микросекунд при 220 К с использованием температурно-зависимых кинетических измерений.

Ученые отмечают, что ранее подобных наблюдений не было ввиду отсутствия соответствующего оборудования. В современных лабораториях есть возможность проводить рентгеновские исследования процессов, которые протекают молниеносно. В добавок к этому существует множество методик моделирования, позволяющих предугадать ход исследуемых процессов до фактических наблюдений. Фактор скорости крайне важен, когда речь идет об исследовании воды в момент ее преобразования в лед. За счет «быстрых» рентгеновских лучей ученым удалось наблюдать процесс преобразования одной жидкости в другую, что предшествует образованию льда. Следовательно, при определенных условиях вода из жидкого состояния переходит в другое жидкое состояние.

Результаты этого колоссального труда открывают новые возможности перед исследователями воды, позволяя разрешить многолетние споры вокруг живительной жидкости и ее необычных свойств.

В будущем ученые намерены провести дополнительные исследования своего открытия, поскольку остается еще немало вопросов касательно свойств второго жидкого состояния воды и его важности в процессах, протекающих на планете. По некоторым предположениям наличие двух жидких фаз воды может каким-то образом быть связано с биологическими процессами в живых клетках.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. 🙂

Немного рекламы

Источник

Агрегатные состояния воды в обычных условиях

какое состояние имеет вода

Агрегатные состояния воды в природе — облака, дождь, снег, лед, град, роса, иней туман … мы знакомы с ними с раннего детства.

Агрегатные состояния воды в обычных условиях в природе

Агрегатные состояния воды ежедневно встречаются нам в окружающей нас природе. Они активно влияют на все аспекты жизнедеятельности человека.

В природе в естественных условиях вода может в изобилии существовать в 3-х основных агрегатных состояниях:

Круговорот воды в природе

Жидкое состояние воды в природе

Без воды в жидком состоянии большинство живых существ на нашей планете просто погибнет.

Аккумулируется вода в жидком состоянии в хорошо всем нам известных формах — это океаны, моря, реки, озёра, пруды, ставки, каналы, атмосферных осадках …

Отметим интересный факт — вода в жидком состоянии при фиксированном объёме не имеет фиксированной формы.

Твердое состояние воды в природе

Вода из жидкого состояния переходит в твердое при температуре 0º C (плюс/минус в зависимости от давления). Процесс перехода воды из жидкого состояния в твердое имеет интересную аномалию. При понижении температуры молекулы воды, как и в других материях, сближаются друг с другом. Так происходит вплоть до температуры 4º C. При этой температуре у воды максимальная плотность. При дальнейшем понижении температуры плотность начинает уменьшаться. Благодаря именно этому удивительному свойству лёд плавает, а не тонет. Плотность льда составляет приблизительно 90% от плотности воды.

Вода в твердом состоянии имеет как фиксированный объём, так и фиксированную форму.

Газообразное состояние воды в природе

Из жидкого состояния в парообразное вода переходит при температуре 100º C (плюс/минус в зависимости от давления). Водяной пар не всегда можно увидеть, но его можно почувствовать. Количество пара в атмосфере определяется как влажность. При повышенной влажности можно сказать, что по ощущениям воздух становится «липким».

Агрегатные состояния воды — переходные процессы

Процессы перехода воды с одного агрегатного состояния в другое определяются следующим образом:

Граничные точки перехода воды в состояния лед/вода и вода/пар определили соответственно как 0 и 100 градусов по Цельсию при условии атмосферного давления 760 мм рт. ст. или 101 325 Па. Всем с детства хорошо известна простая примета, температура за окном опустилась ниже нуля, ждите снега 🙂

Четвёртое или второе жидкое агрегатное состояние воды

Относительно недавно физики обнаружили новое состояние воды. Это состояние проявляется при температурах в промежутке от 40º до 60º C и проявляется в том, что жидкая вода непрерывно переключается между двумя состояниями, которые имеют разный набор физических свойств.

Важно знать …

Необходимо отметить такой, важный для человека факт – при понижении атмосферного давления температура кипения падает. Это необходимо учитывать, например, в условиях высокогорья. Отметим также еще одно явление, которое полезно знать человеку в повседневной жизни — объем воды в твердом состоянии больше чем в жидком. Этот факт иллюстрирует общеизвестный пример – бутылка с водой оставленная на морозе будет разорвана, образовавшимся в ней льдом.

Очевидно, что в разных своих агрегатных состояниях Вода обладает разными базовыми физическими свойствами такими как – текучесть, твердость, летучесть.

Необходимо отметить, что пар определяет такой важный для человека и других живых организмов параметр как «влажность воздуха«. Влажность воздуха напрямую зависит от количества водяного пара в атмосфере, больше пара выше влажность. На земле существуют места как с очень высокой, так и с низкой влажностью атмосферы. Одним из самых влажных мест планеты считается индийский город Черрапунджи (Cherrapunji), а одним из самых сухих Сухие долины в Антарктике.

Выводы

Еще раз сделаем акцент на том, что во многом благодаря именно способности воды находиться в природных естественных условиях в трех разных агрегатных состояниях и существует жизнь на нашей планете.

Источник

Молекула воды: строение в различных агрегатных состояниях

Модель строения воды

Молекула воды включает два атома водорода (Н) и один атом кислорода (О). Элементы, из которых состоит жидкость, определяют всю функциональность и особенности. Модель молекулы воды имеет форму треугольника. Вершину этой геометрической фигуры представляет крупный элемент кислорода, а внизу находятся небольшие атомы водорода.

Молекула воды обладает двумя положительными и двумя отрицательными полюсами зарядов. Отрицательные заряды формируются из-за излишка электронной плотности у атомов кислорода, а положительные – из-за нехватки электронной плотности у водорода.

какое состояние имеет вода

Неравномерное распределение электрических зарядов создает диполе, где диполярный момент составляет 1,87 дебай. Вода обладает способностью растворять вещества, поскольку ее молекулы пытаются нейтрализовать электрическое поле. Диполя приводят к тому, что на поверхности погруженных в жидкость веществ становятся слабее межатомные и межмолекулярные связи.

Вода отличает большой устойчивостью при растворении прочих соединений. В обычных условиях из 1 млрд молекул только 2 распадаются, а протон переходит в строение иона гидроксония (образуется при растворении кислот).

Вода не меняет свой состав при взаимодействии с другими веществами и не влияет на структуру этих соединений. Такая жидкость считается инертным растворителем, что особо важно для живых организмов. Полезные вещества поступают к различным органам через водные растворы, поэтому важно, чтобы их состав и свойства оставались неизменными. Вода сохраняет в себе память о растворенных в ней веществах и может применяться многократно.

Каковы особенности пространственной организации молекулы воды:

Атомы водорода соединяются с атомами кислорода и образуют молекулу воды с ковалентной связью. Водородные соединения более сильные, поэтому, когда они разрываются, то молекулы присоединяются к другим веществам, способствуя их растворению.

какое состояние имеет вода

Это свойство подтверждается и большой теплотой парообразования, что делает жидкость хорошим энергоносителем. Вода – отличный регулятор температуры, способен нормализировать резкие перепады этого показателя. Теплоемкость жидкости повышается, когда ее температура 37 градусов. Минимальные показатели соответствуют температуре человеческого тела.

Относительная молекулярная масса воды составляет 18. Рассчитать этот показатель достаточно легко. Следует заранее ознакомиться с атомной массой кислорода и водорода, которая равна 16 и 1 соответственно. В химических задачах нередко встречается массовая доля воды. Этот показатель измеряется в проценте и зависит от формулы, которую требуется рассчитать.

Строение молекулы в различных агрегатных состояниях воды

В жидком состоянии молекула воды состоит из моногидроля, дигидроля и тригидроля. Количество этих элементов зависит от агрегатного состояния жидкости. Пар включает одну H₂O – гидроль (моногидроль). Две H₂O обозначают жидкое состояние – дигидроль. Три H₂O включает лед.

Агрегатные состояния воды:

При этом существуют переходные состояния жидкости, например, при испарении или замерзании. Для начала требуется разобраться, отличаются ли молекулы воды от молекул льда. Так замерзшая жидкость имеет кристаллическую структуру. Модель льда может иметь форму тетраэдр, тригональной и моноклинной сингонии, куба.

Обычная и замерзшая вода отличаются плотностью. Кристаллическая структура приводит к меньшей плотности и увеличению объема. Основное различие между жидким и твердым состоянием – это количество, сила и разновидность водородных связей.

Состав не меняется ни в одном агрегатном состоянии. Отличается строение и движение составных частей жидкости, сила связей водорода. Обычно молекулы воды слабо притягиваются друг к другу, размещаются хаотично, поэтому жидкость такая текучая. Лед отличается более сильным притяжением, так как создается плотная кристаллическая решетка.

Многих интересует, одинаковы ли объемы и состав молекул холодной и горячей воды. Важно запомнить, что состав жидкости не меняется ни в одном из агрегатных состояний. Молекулы при нагревании или остывании жидкости отличаются расположением. В холодной и горячей воде разные объемы, так как в первом случае структура упорядоченная, а во втором – хаотичная.

Когда лед тает, то его температура не меняется. Только после того, как жидкость меняется свое агрегатное состояние, показатели начинают подниматься. Для таяния требуется определенное количество энергии, которое называется удельной теплотой плавления или лямбда воды. Для льда показатель равен 25000 Дж/кг.

Твердое состояние воды

Вода в твердом состоянии – это лёд и снег. Некоторые не понимают, к какому агрегатному состоянию воды относится иней. Конечно, к твёрдому! Это мелкая ледяная крошка, замерзшие капли росы.

Твердая – это замороженная вода. Когда она замерзает, ее молекулы отодвигаются подальше друг от друга, делая лед менее плотным, чем жидкость, т.е. вода в твердом состоянии занимает больший объем, чем в жидком.

Большинство веществ при снижении температуры сжимается, а вода – расширяется, и в этом ее уникальная особенность.

Замерзает – это значит, что при 0 градусов Цельсия вода кристаллизуется и переходит из жидкого состояния в твердое. Наличие в воде солей снижает температуру замерзания.

Несмотря на то, что самое распространенное на нашей планете — жидкое состояние воды, значительная ее часть (2/3 всех пресноводных запасов) находится в замороженном виде. Площадь ледников – около 11% всей суши Земли.

Жидкое состояние воды

Вода в жидком состоянии встречается на нашей планете не только в реках и океанах. Облака состоят из крошечных капелек воды и кристалликов льда, и дождь – это тоже жидкая вода.

Также вода в жидком состоянии просачивается через почву и образует подземные водные горизонты, из которых черпается основная масса питьевой воды.

какое состояние имеет вода

Вода в жидком состоянии отличается высокой прилипчивостью к различным твердым материям. Сама по себе она не является «влажной», но легко делает влажными большинство твердых материалов.

Жидкая вода легко переходит в твердое и газообразное состояние. Главным образом, это зависит от температуры. Но свою роль играет и давление.

Физический переход воды из жидкого состояния в газообразное называется испарением, потому что газообразное состояние воды называется паром.

Как жидкое состояние воды превращается в газообразное? Когда мы кипятим воду, она превращается из жидкости в газ, или водяной пар. Когда его часть остывает, мы видим небольшое облако, которое и называют паром. Хотя, если мы его видим, то это уже жидкое состояние воды, т.е. скопление ее микроскопических капелек.

Пар — это вода в газообразном состоянии, которое образуется, когда вода кипит или испаряется. Настоящий пар невидим; однако слово «пар» часто ошибочно относят к влажному пару, видимому туману, как аэрозолю водяных капель, образующихся при конденсации водяного пара.

И тут всплывает такое понятие, как «точка росы». Это температура воздуха, которая меняется в зависимости от давления и влажности, ниже которой водный пар начинает конденсироваться в водяные капли и образуется роса. Т.е. агрегатное состояние воды из газообразного состояния меняется на жидкое.

Закипает жидкая пресная вода при 100°C (градусах Цельсия) или 212°F (градусах Фарингейта), в условиях нормального атмосферного давления. Чем ниже давление (например, в горах), тем выше температура кипения.

Состояние газа

Итак, вода в газообразном состоянии – это пар. Утверждение, что большая часть воды в гидросфере находится в газообразном состоянии – не верно.

Не все хорошо себе представляют, в каком состоянии вода способна испаряться. Оказывается, вода в твердом состоянии испаряется так же, как и жидкая, только медленнее! Скорость испарения зависит от температуры. Т.е. в газообразное состояние вода может переходить прямо из твердого, минуя жидкое.

какое состояние имеет вода

Испаренная с поверхности Земли вода в газообразном состоянии образует облака и тучи

Агрегатные состояния воды — переходные процессы

Процессы перехода воды с одного агрегатного состояния в другое определяются следующим образом:

Граничные точки перехода воды в состояния лед/вода и вода/пар определили соответственно как 0 и 100 градусов по Цельсию при условии атмосферного давления 760 мм рт. ст. или 101 325 Па. Всем с детства хорошо известна простая примета, температура за окном опустилась ниже нуля, ждите снега 🙂

Вода всегда вокруг нас

Водный баланс – это основа жизни на нашей планете. Большая её часть на Земле – это океаны и моря. В них сосредоточено 97% данного вещества. Остальные 3 % – это реки, озёра, пруды, подземные воды и парообразная вода в атмосфере. Растения и животные для обеспечения своей жизнедеятельности ежедневно потребляют живительную влагу.

Вода – это составляющая часть организма человека. Каждая наша клетка больше чем наполовину состоит из этой жидкости. Кровь, текущая в наших венах, – это на 82% вода. Мышцы и кожа содержат её 76%. Удивительно, но даже кости в своём составе имеют до 30% воды. Её наименьшее содержание в зубной эмали – всего 0,3%.

Общая масса воды на планете Земля – более 2 000 000 000 миллионов тонн.

какое состояние имеет вода

Какие существуют 3 состояния воды в природе?

На вопрос «Что такое вода?» почти все без раздумий отвечают: «Это жидкость!». Ведь чаще всего мы привыкли видеть жидкое состояние воды в природе. Но на самом деле она может иметь разные формы, кардинально отличающиеся одна от другой.

Вода бывает в трёх состояниях:

Лёд – вода в твёрдом виде

Н2О из жидкого переходит в твёрдое агрегатное состояние при снижении температуры ниже 0 градусов по Цельсию. Интересно то, что почти все предметы при охлаждении уменьшаются в объёмах, а вода, наоборот, замерзая, расширяется. Если так она прозрачная и бесцветная, то при замерзании может приобретать белый цвет из-за попадания частичек воздуха внутрь льда.

Необычно, что при одной и той же кристаллической структуре лёд может иметь множество разнообразных форм. Твёрдое состояние воды в природе — это гигантские айсберги, блестящая корка льда на реке, белые хлопья снега, сосульки, висящие на крышах.

Лёд имеет огромное значение для хозяйственной деятельности человека и оказывает большое влияние на поддержание жизнедеятельности многих организмов. Например, при замерзании реки он выполняет защитную функцию, сохраняя водоём от дальнейшего промерзания, этим самым оберегая подводный мир.

какое состояние имеет вода

Но также лёд может стать причиной разрушительных стихийных бедствий. Например, град, обледенение зданий и летательных аппаратов, промерзание почвы, ледяные обвалы.

В быту мы используем замёрзшую воду как хладагент, бросая небольшие кубики льда в напитки для их охлаждения. Подобным образом могут охлаждаться пищевые продукты и медицинские препараты.

Химические названия

Почему же воду назвали водой? Слово «вода» происходит от древнегерманского «мокрый, текучий». В химии могут встречаться разные названия этого соединения. Самые распространенные – гидроксид водорода и окись водорода. Также в химической литературе ее называют:

какое состояние имеет вода

Происхождение воды на планете

Возникновение воды на нашей планете является предметом научных споров. Существует 2 основные гипотезы:

Образование воды

Многих интересует, какая вода находится в реках, морях, под землей. Образовавшаяся миллиарды лет назад вода сконцентрировалась в океанах. Из океанов она испаряется и поднимается, где образуются облака. После долгого путешествия она возвращается на землю в виде осадков. Вода собирается и возвращается через реки обратно в море. Часть просачивается в почву и попадает в грунтовые воды. Там формируются новые источники, которые текут в море.

В более холодном климате вода остается на ледниках, которые очень медленно, стекают к более низким высотам, где и тают. В полярных регионах этот механизм скольжения настолько медленный, что в ледниках можно найти воду, попавшую на поверхность Земли десятки тысяч лет назад. Вот откуда берется в природе вода.

Наука о воде

Изучением природных вод, явлений и процессов занимается наука Гидрология.

Первые упоминания о гидрологии появились на заре истории человечества около 6000 лет назад.

Начало гидрологических наблюдений в России относится к XV–XVI вв.: в записях русских летописцев сохранились сведения о свойствах воды, наводнениях, паводках, замерзании.

Значение на Земле

Каждая клетка живого организма состоит из жидкости и нуждается в регулярном пополнении. Без воды не проживут ни люди, ни растения, ни животные.

Вода формирует климат, участвует в круговороте воды в природе, для многих живых организмов является средой обитания.

Эмпирическое правило Клечковского

Эмпирическое правило Клечковского и вытекающее из него схема очерёдностей несколько противоречат реальной энергетической последовательности атомных орбиталей только в двух однотипных случаях: у атомов Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au имеет место «провал» электрона с s-подуровня внешнего слоя на d-подуровень предыдущего слоя, что приводит к энергетически более устойчивому состоянию атома, а именно: после заполнения двумя электронами орбитали 6s следующий электрон появляется на орбитали 5d, а не 4f, и только затем происходит заселение четырнадцатью электронами орбиталей 4f, затем продолжается и завершается заселение десятиэлектронного состояния 5d. Аналогичная ситуация характерна и для орбиталей 7s, 6d и 5f.

Органолептические свойства воды

Сюда относятся показатели, которые возможно определить органами чувств. К ним относятся вкус, запах, цвет (цветность), мутность (прозрачность или непрозрачность). Часть параметров определяется не только с помощью носа, глаз, языка, но и на аналитическом оборудовании. Например, мутность и цветность определяют используя фотометр, а прозрачность — цилиндр и градировочную шкалу.

Характеризует вкусовые ощущения от попадания жидкости на рецепторы языка. Оценивается в баллах. иногда добавляют описание вкуса, помогающее оценить пригодность для питья, содержание специфических химических веществ.

Оценивают вкус только питьевой воды, к которой относится бутилированная и водопроводная. Некоторые лаборатории определяют вкус только бутилированной при условии предоставления запечатанной тары (бутылки). Это обусловлено заботой о безопасности сотрудников. Представьте себя на месте химика-аналитика, который вынужден пробовать жидкость из неизвестного источника. Курьезные случаи: список параметров анализа «сточки» содержал вкус. Разумеется, никто не пробовал канализационные стоки, это опасно.

Запах

Оценивает ощущения от вдыхания пара, образующегося над сосудом, содержащим исследуемую жидкость, через нос. Запах выражают баллами, которые характеризуют интенсивность запаха, а также указывают его характер, например:

Выделяют специфические запахи химических соединений, например, хлора, сероводорода, фенола. По этой причине определение запаха предшествует определению других компонентов, помогает рассчитать коэффициент разбавления, скорректировать подготовку проб. Определять запах могут только сотрудники, прошедшие специальное обучение. Среди требований к помещению числится обеспечение отсутствия мешающих воздействий, включая цвет стен, а также отсутствие посторонних запахов.

Погрешность определению запаха добавляет использование неправильной тары для отбора. К ней относятся бутылки из-под газированных, ароматизированных напитков. Даже если тщательно вымыть такую тару запах все равно сохранится.

Цветность воды

Определяет изменение длины волны светового луча при прохождении через толщу раствора. Проще говоря, сосуд прямоугольной формы (длина большей стороны 1 или 5 сантиметров) заполняют исследуемым раствором, пропускают через него свет, изучают изменение этого света. Исследование проводят на оптическом приборе — фотометре или спектрофотометре. При проведении экспресс-анализа используют сравнение с стандартной шкалой. Это быстро, но не точно.

Чистая вода не имеет цвета, по крайне мере, его не видно, если толщина слоя менее метра. Цветность появляется если раствор содержит соединения, изменяющие окраску. К ним относятся органические вещества (гуминовые, органические красители), минеральные компоненты или их комплексы (большинство металлов образуют окрашенные соединения при взаимодействии с гидроксидом или анионами минеральных кислот). По величине цветности судят об общем содержании «цветных» соединений, отдельные группы не выделяют. Как правило, обращают внимание на специфическую окраску, которая помогает при проведении анализа. Например, ржавая говорит о высоком содержании железа, коричневая — признак гуминовых соединений, синие оттенки — выраженное химическое загрязнение.

Мутность

Показывает содержание едва заметных взвешенных частиц, которые снижают способность раствора пропускать свет. Это происходит за счет того, что взвесь отражает, рассеивает часть света, проходящего через слой жидкости. Мутность определяют экспресс-методом используя цилиндр с прозрачным дном и бумагу с нанесенным стандартным шрифтом. При таком определении параметр могут называть прозрачностью по шрифту. Мутность не выявляет конкретный компонент, то есть определить характер взвеси определяя только этот параметр невозможно. Он выявляет присутствие посторонних частиц, служит показанием к проведению дополнительных анализов или установке механического фильтра.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *