какое соотношение частоты входных и выходных сигналов в т триггере
T-триггеры
T-триггер — это счетный триггер. У данного триггера имеется только один вход. Принцип работы T-триггера заключается в следующем. После поступления на вход T импульса, состояние триггера меняется на прямо противоположное. Счётным он называется потому, что T триггер как бы подсчитывает количество импульсов, поступивших на его вход. Жаль только, что считать этот триггер умеет только до одного. При поступлении второго импульса T-триггер снова сбрасывается в исходное состояние.
T-триггеры строятся только на базе двухступенчатых триггеров, подобных рассмотренному ранее D триггеру. Использование двух триггеров позволяет избежать неопределенного состояния схемы при разрешающем потенциале на входе синхронизации «C», так как счетные триггеры строятся при помощи схем с обратной связью
T триггер можно синтезировать из любого двухступенчатого триггера. При этом не важно ТТЛ или КМОП технология используется. Рассмотрим пример синтеза T триггера из динамического D триггера. Для того чтобы превратить D триггер в счётный, необходимо ввести цепь обратной связи с инверсного выхода этого триггера на вход, как показано на рисунке 1.
Рисунок 1. Схема T триггера, построенная на основе D триггера
Временная диаграмма T триггера приведена на рисунке 2. При построении этой временной диаграммы был использован триггер, работающий по заднему фронту синхронизирующего сигнала.
Рисунок 2. Временные диаграммы T триггера
Т-триггеры используются при построении схем различных счётчиков, поэтому в составе БИС различного назначения обычно есть готовые модули этих триггеров. Условно-графическое обозначение T триггера приведено на рисунке 3.
Рисунок 3. Условно-графическое обозначение T триггера
Существует еще одно представление T триггера. При разработке схем синхронных двоичных счетчиков важно осуществлять одновременную запись во все его триггеры. В этом случае вход T триггера служит только для разрешения изменения состояния на противоположное, а синхронизация производится отдельным входом «C». Подобная схема T триггера приведена на рисунке 4.
Рисунок 4. Схема синхронного T триггера, построенная на основе D триггера
Подобная схема счетного триггера может быть реализована и на JK триггере. Принципиальная схема синхронного T-триггера, выполненная на JK-триггере показана на рисунке 5.
Рисунок 5. Схема синхронного T триггера, построенная на основе JK триггера
Временная диаграмма синхронного T триггера приведена на рисунке 5, а его условно-графическое обозначение — на рисунке 6.
Рисунок 6. Временные диаграммы синхронного T триггера
Рисунок 7. Условно-графическое обозначение синхронного T триггера
Выводы T-триггеры широко применяются в схемах деления и умножения частоты. Без них было бы невозможна реализация синтезаторов частот, которые применяются в качестве задающих генераторов в передатчиках и гетеродинов в приемниках раций, мобильных телефонов или GSM навигаторов. Не менее важна роль T-триггеров в формировании тактовой частоты цифровых микросхем, таких как центральные процессоры компьютеров, планшетов или цифровых фотоаппаратов.
Понравился материал? Поделись с друзьями!
Вместе со статьей «T-триггеры» читают:
Какое соотношение частоты входных и выходных сигналов в т триггере
В последовательностных схемах (ПС) выходные сигналы зависят не только от комбинаций входных, но и от значений самих выходных сигналов в предшествующий момент времени. Для работы ПС принципиальное значение имеет время задержки распространения tзд.р. Простейшей ПС является триггер.
3.1 ТРИГГЕРЫ
— триггер с раздельной установкой состояний (RS-триггер),
Q. Триггер переходит из текущего состояния X на выходе к состоянию 0, при подаче на вход S нуля и на вход R единицы, а при поступлении на вход S единицы и на вход R нуля триггер переходит к состоянию 1. При нулевых значениях, когда S=R=0 триггер должен сохранять старое значение. Комбинация сигналов S=R=1 не определена. В соответствии с описанием составим таблицу состояний триггера (таблица 6).
Этому уравнению соответствует схема на рис.35, справа. Учитывая,что Qt и Q(t+dt) сигналы на одном и том же выходе, но в разные моменты времени, свяжем их. Окончательно схема триггера и его условное обозначение будет выглядеть, как на рис.36.
Q будут установлены в 1, что противоречит аксиоме Q*
Q = 0. Поэтому такой режим, иногда называют запрещенным. Однако ничто не мешает разработчику использовать его, например для сигнализации об одновременном и нежелательном поступлении единичных сигналов на RS входы, введением дополнительной схемы И.
Временные диаграммы RS триггера с инверсными входами приведены на рис.37. Через время tзд.р.,обозначенное «-«, от поступления сигнала
S = 0 на вход элемента И-НЕ с номером 3, выход Q переключится первым, а следом через такой же промежуток времени переключится и выход
Q переключится первым. Отсюда вытекает, что изменение входных сигналов не должно происходить быстрее времени dt.
Одним из применений RS триггера с инверсными входами служит схема подавления «дребезга» контактов клавиатуры. Процесс многократного размыкания и замыкания контактов при их переключении называется дребезгом. Схема и диаграммы показаны на рис.38.
В момент t0 нажатия на клавишу, начинаются соударения верхнего и среднего контактов.До момента t1 сигналы
R поочередно принимают значения 1,1 и 0,1 что соответствует режимам памяти и установки в 1. При этом, естественно начальное значение Q = 1 не изменится, что и требуется. В интервале t1..t2 средний контакт находится в «свободном по- лете». Первое его касание нижнего контакта в момент t2 сбросит триггер (
R = 0). До момента t3 сигналы
R поочередно принимают значения 1,0 и 1,1 что соответствует режимам сброса и памяти, т.е. Q = 0. При отпускании клавиши (момент t3) развивается обратный процесс. В результате действия схемы выходной сигнал чист от импульсных помех.
Нетрудно убедиться,что при C=0 сигнал Q=
Q, т.е. независимо от значений S и R, выходы сохраняют старые значения и триггер находится в режиме памяти. При C=1 он функционирует, как асинхронный RS-триггер. Триггеры со статическим управлением называют, также «прозрачными», т.к. при активном уровне синхросигнала C, информация с входов беспрепятственно проходит на выходы. Временные диаграммы приведены на рис.40.
До момента времени t4 сигнал C = 1 и выходное значение определяется комбинациями сигналов R и S. В течение интервала времени t0. t1 на входе R действует 1, а сигнал S = 0, поэтому Q тоже равно 0. Начиная с момента t1 и до момента t2 R = S = 0 и действует режим памяти (Q не изменяется). В момент t2 R = 0,а S = 1 и триггер устанавливается (Q = 1). С момента окончания импульса S и до момента t3 триггер хранит эту единицу, а в момент t3 сбрасывается, т.к.R = 0, а S = 1. Аналогично можно проанализировать и все остальные состояния выхода.
L*Qt + L*D + D*Qt = L*D + Qt(
Этой формуле соответствует схема и условное обозначение на рис.41, в центре и справа.
Если в уравнение вместо
D*L получится реализация D-триггера с использованием RS- триггера, но появляется дополнительный инвертор. На рис.42 приведена схема такого триггера, дополненная асинхронными инверсными входами установки и сброса
R (эти две перекрестные связи показаны двойными линиями).
S подать активный сигнал 0, а на вход
R единицу, то Q=1 независимо от сигналов на остальных входах элемента 3. На выходе 2-го элемента по той же причине тоже единица. Три единицы встречаясь на входах элемента 4, дают на его выходе ноль, который попадая на вход 3-го элемента подтверждает его состояние. Триггер устанавливается в единицу. Причем сигналы D и L не влияют на этот процесс. В силу этого, асинхронные входы (
R) имеют наивысший приоритет. Вследствие симметричности асинхронных связей, аналогично протекает процесс при
R=0, но триггер, естественно сбрасывается (Q = 0). Уравнение синхронного D-триггера с асинхронными входами сброса/установки
R записыватся в следующем виде:
В этом выражении до скобок записано уравнение асинхронного RS-триггера, а в скобках уравнение D-триггера. Нетрудно увидеть, что при
R = 1 все выражение равно единице (установка триггера в «1»), а при
R = 1, RS-триггер «отключается» и схема функционирует, как D-триггер. Временные диаграммы работы триггера приведены ниже.
С момента времени t0 до момента t1 сигнал загрузки L = 1 (на входах
S пассивный уровень) и данные с входа D беспрепятственно проходят на выход Q (свойство прозрачности D-триггера со статическим управлением видно особенно наглядно). В момент t1 триггер становится непрозрачным, информация защелкивается и последнее значение на выходе будет храниться до прихода нулевого уровня на вход
R в момент t2. Состояние Q = 0 не изменится даже при L = D = 1 в момент t3. Триггер установится только в момент t4 по сигналу
S = 0. Если вернуться к рис.41 и убрать из условного обозначения триггера вход C, получится повторитель и инвертор, как на приведенном рисунке, и эта схема не будет обладать свойствами памяти.
Отличается от cтатического D-триггера свойствами L(C) входа. Запись информации происходит только в момент перехода тактового сигнала L из 0 в 1. При постоянном значении L=0, L=1 или отрицательном перепаде триггер хранит предыдущую информацию, т.е. не обладает свойством прозрачности (см.таблицу состояний 7). Промышленно выпускаемые триггеры дополняются асинхронными инверсными входами установки и сброса
Временные диаграммы триггеров с динамическим входом существенно изменяются. Действие асинхронных входов такое же, как в D-триггере со статическим управлением, поэтому на временных диаграммах они не указаны (рис.44).
3.1.5 УНИВЕРСАЛЬНЫЙ JK-ТРИГГЕР
JK-триггер имеет два информационных входа J и K, тактовый динамический вход, чаще инверсный, и два асинхронных входа установки и сброса. Его таблица состояний имеет вид:
3.1.7 ВЗАИМНЫЕ ПРЕОБРАЗОВАНИЯ ТРИГГЕРОВ
D-триггер с динамическим управлением также преобразуется в T-триггер, путем введения обратной связи с инверсного выхода на вход D. Тогда Q(t+dt) = D, но D в свою очередь равно D =
Qt и, следовательно Q(t+dt) =
Qt, т.е. новое значение на выходе триггера является инверсией старого с каждым поступлением положительного перепада тактового импульса C (рис.48-1,2).
И, наконец, любой из перечисленных триггеров может быть использован в качестве асинхронного RS-триггера с инверсными входами (рис.48-3), невзирая на остальные сигналы, что объясняется наивысшим приоритетом входов
3.2 РЕГИСТРЫ
Последовательностные схемы с различными комбинациями последовательного и параллельного способов записи и считывания информации. Выполняются на основе триггеров.
3.2.1 ПАРАЛЛЕЛЬНЫЕ И ПОСЛЕДОВАТЕЛЬНЫЕ РЕГИСТРЫ
В обозначениях регистров сдвига направление стрелки, указывающей сдвиг, условно. В разных справочниках, ее направление различно.Условно принимается, что сдвиг производится от младшего разряда к старшему. Практические схемы регистров дополняются схемами, подключаемыми к каждому триггеру и имеющими вход параллельной записи Di, общий вход разрешения записи L и общий асинхронный вход сброса
R всех триггеров. Эти схемы подключаются к незадействованным входам
Si триггеров. Данному описанию соответствует таблица истинности 9.
Si с помощью таблиц Карно получим:
L + Di). Этой паре уравнений соответствует схема, показанная на рис.51, где приведено также условное обозначение регистра сдвига выполненного по такой схеме.
R обладает наивысшим приоритетом, если
Si=1 и все триггеры обнуляются, независимо от сигналов L,Di и C. Меньшим приоритетом обладют входы L и Di. Если
R = 1, то при L = 1, производится параллельная запись информации и Qi = Di независимо от сигнала C. И, наконец, если на входах
R и L пассивные уровни, то
Si = 1, тоже пассивный уровень и регистр хранит информацию, либо производит ее сдвиг.
Одно из применений регистров сдвига с параллельной загрузкой кода заключается в преобразовании параллельного формата данных в последовательный, передаче этих данных по однопроводной линии связи (вторая линия должна быть, как минимум «землей» или экраном) и обратном преобразовании последовательной информации в параллельную (рис.52).
Такая схема применяется в коммуникационных портах ЭВМ (COM-порты), в микросхеме К580ИК51, а также в модемах.
3.2.2 РЕВЕРСИВНЫЙ РЕГИСТР СДВИГА
Название указывает, что сдвиг данных от разряда к разряду может производиться, как в одну сторону, так и в другую.Одна из возможных схем трехразрядного реверсивного регистра с двумя последовательными информационными входами, для сдвига информации влево DSL, и вправо DSR, с параллельными входами записи (D0..D2), синхровходом C, входом
R установки в 0 всех триггеров и двумя входами выбора режима M1,M0, приведена на рис.53.
К D-входу любого разряда, за исключением крайних, подключены, через входы 1 и 2 мультиплексора, выходы и левого и правого соседних триггеров. Если M1=0, а M0=1, то к входам D подключены первые входы мультиплексоров и информация в каждый триггер, кроме нулевого записывается от левого соседа (происходит сдвиг вправо). Вход DSR служит в этом режиме для последовательного ввода информации. Если M1=1, M0=0, то к входам D подключены вторые входы мультиплексоров и информация в каждый триггер, кроме последнего записывается от правого соседа (происходит сдвиг влево). Для последовательного ввода данных в этом режиме используется вход DSL. При M1=M0=1 происходит параллельная запись Qi=Di положительным фронтом тактового сигнала. Для хранения информации необходимо подать комбинацию M1=M0=0. В этом случае к D-входам триггеров подключатся нулевые входы мультиплексоров (на схеме не показаны). Чтобы не произошло несанкционированной записи схема ИЛИ-И запрещает в этом режиме прохождение синхроимпульсов. По такой схеме выполнен 8-разрядный регистр 1533ИР13. Реверсивный регистр может использоваться для быстрого (всего за n тактов) деления и умножения двоичных чисел на 2^n, где n-число сдвигов. Например вместо числа 5, после сдвига влево на 2 разряда, стало число 20.
3.2.3 СИНХРОННЫЙ И АСИНХРОННЫЙ СПОСОБЫ ЗАГРУЗКИ ПАРАЛЛЕЛЬНОГО КОДА
Устройства (в том числе регистры), в которых для записи входного параллельного кода Di используется сигнал разрешения записи L, а тактовый сигнал C не используется, называются устройствами с асинхронной параллельной записью кода.
Условные обозначения таких входов могут совпадать поэтому для точной идентификации способа записи необходимо обращаться к справочникам (таблица состояний либо описание).
Триггер Т-типа (Счётный триггер)
Т-триггер или счётный триггер, имеет один счётный вход Т и два выхода (Рисунок 50,а). Функционирование триггера определяется уравнением:
Из уравнения следует, что Т-триггер каждый раз изменяет своё состояние на противоположное с приходом на счётный вход Т очередного тактирующего импульса длительностью tи. Этому способствует наличие перекрёстных обратных связей с выходов триггера на входы элементов D1 и D2. Для надёжной работы триггера, с целью сохранения информации о предыдущем состоянии триггера в момент его переключения, в схему вводят элементы задержки, имеющие время задержки tз>tи.
Рисунок 50 Т-триггеры: — а) структурная схема, б) УГО TV-триггера,
в) Т-триггер на основе D-триггера.
По окончании действия тактирующего импульса.
Пусть в исходном состоянии Q=1. Сигнал T=1 откроет элемент D2, так как на втором входе D2 имеется сигнал лог «1» с выхода Q, а элемент D1 будет закрыт. Триггер переходит в состояние Q=0. Вентиль D2 остаётся открытым в течение времени tи, т.к. сигнал Q=1 будет задержан ЛЗ1 на время τз>tи. В то же время сигнал 
По окончании действия тактирующего импульса элементы D1 и D2 закроются, так как потенциал входа T=0. После чего на вход элемента D1 через ЛЗ2 поступит сигнал 
Роль ЛЗ в Т-триггерах выполняют логические элементы с большим временем задержки tзд.р или специальные компоненты электронных схем, например, диоды с накоплением заряда.
Кроме счётного входа Т-триггер может иметь вход разрешения V (Рисунок 50,б). Сигнал на этом входе разрешает (при V=1) или запрещает (при V=0) срабатывание триггера от поступающих на вход T сигналов. Т-триггеры, имеющие дополнительный вход V, называются TV-триггерами. Наличие входа V позволяет организовать счёт в заданном временном интервале, что существенно расширяет функциональные возможности Т-триггера.
Счётный Т-триггер может быть построен на основе D-триггера, соединив инверсный выход D-триггера со входом D, как показано на рисунке 50,в. В такой схеме каждый переход 1/0 на входе C будет приводить к переходу триггера в противоположное состояние. Например, если Qn=1, то 
Таким образом, из рассмотрения принципа работы Т-триггера следует, что при Т=1 спадающий фронт сигнала на входе C переводит триггер в противоположное состояние. Частота изменения потенциала на выходе Т-триггера в два раза меньше частоты импульсов на входе C. Это свойство Т-триггеров позволяет строить на их основе двоичные счётчики. Поэтому эти триггеры и называют счётными.
JK-триггер — это схема с двумя устойчивыми выходными состояниями и двумя входами J и K (Рисунок 51.а). Подобно RS-триггеру, в JK-триггере входы J и K — это входы установки выхода Q триггера в состояние 1 или 0. Однако, в отличие от RS-триггера, в JK-триггере наличие J=K=1 приводит к переходу выхода Q триггера в противоположное состояние. Условие функционирования JK-триггера описывается функцией:

Рисунок 51 JK-триггеры: а) асинхронные; б) тактируемые фронтом.
Триггер JK-типа называют универсальным потому, что на его основе с помощью несложных коммутационных преобразований можно получить RS и Т-триггеры, а если между входами J и K включить инвертор, то получится схема D-триггера.
Недостатком этой схемы является зависимость работы схемы от длительности тактового импульса. Импульс должен быть коротким и должен закончиться до завершения процесса переключения триггера. Для ослабления требования к длительности тактового импульса в цепи обратных связей можно включить элементы задержки, как показано на рисунке 51,а пунктиром. Однако этот путь не всегда является целесообразным.
Разработаны и применяются в основном в интегральном исполнении JK-триггеры, тактируемые фронтом тактовых импульсов, которые не чувствительны к длительности тактовых импульсов.
JK-триггеры, тактируемые фронтом, строятся по схеме MS (master-slave то есть мастер-помощник). В схеме имеется два триггера: основной D1…D4, помощник D5…D8 и цепь, разделяющая их — D9 (Рисунок 51,б).
Триггер работает следующим образом. Пусть в исходном состоянии Q=0, а 
Пусть J=1, тогда с приходом тактового импульса C=1, D1 откроется, а D2 останется закрытым. Элементы D5 и D6 закроются сигналом 
Несмотря на то, что на одном из входов D5 действует сигнал «1», а на одном из входов D6 — «0», они не изменят состояние вспомогательного триггера, так как на других входах элементов D5 и D6 действует сигнал лог. «0» с инвертора D9.
По окончании действия тактового импульса, появится сигнал лог. «1» на вторых входах вентилей D5, D6, а вентили D1 и D2 закроются. Так как основной триггер находится в состоянии «1», то откроется D5 и информация запишется во вспомогательный триггер (Q=1, 
Совершенно аналогично сигнал «1», поданный на вход K, установит триггер в состояние «0».
Таким образом, в триггере данного типа изменение выходного сигнала происходит только в моменты, когда потенциал «C» переходит из «1» в «0». Поэтому говорят, что эти триггеры тактируются срезом (или фронтом) в отличие от триггеров, тактируемых потенциалом.
Условное графическое обозначение триггера приведено на рисунке 51,в.
Если соединить вместе входы J и K, то JK-триггер превратится в Т-триггер. Пусть триггер находится в исходном состоянии ( 


5.1.5 Несимметричные триггеры
Несимметричный триггер (триггер Шмита) имеет два устойчивых состояния, однако, в отличие от симметричного триггера, нахождение его в том или ином устойчивом состоянии зависит от величины входного сигнала.
Несимметричный триггер на дискретных элементах состоит из двух транзисторов, в эмиттерную цепь которых включён резистор RЭ (Рисунок 52). При таком включении напряжение на базе транзистора VT1 зависит от значения коллекторного тока IК2 транзистора VT2. В свою очередь, базовая цепь VT2 через делитель R1/R2 соединена с коллекторной цепью транзистора VT1. Эти цепи создают замкнутую петлю положительной обратной связи, которая, как и в симметричном триггере, обеспечивает быстрое переключение триггера Шмита из одного устойчивого состояния в другое, когда оба транзистора работают в активном режиме.
Рисунок 52 Триггер Шмита на транзисторах
В отсутствие входного напряжения (Uвх=0) триггер находится в устойчивом состоянии. При этом транзистор VT2 открыт и насыщен, так как на его базу через резисторы Rк1, R1 подаётся положительное напряжение, а транзистор VT1 закрыт. За счёт протекающего коллекторного тока IК2=E/(RК2+RЭ) на резисторе RЭ создаётся падение напряжения и на базе VT1 относительно эмиттера действует запирающее напряжение UБЭ1=–RЭIК2. В таком состоянии триггера напряжение на выходе UВЫХ=U 0 =RЭIК2+UКЭнас.
Если увеличивать входное напряжение, то пока Uвх UОТП, необходимо, чтобы RК1>RК2.
Конденсатор C1 на устойчивые состояния триггера влияния не оказывает. Он выполняет функцию форсирующего конденсатора во время во время включения и выключения транзистора VT2 и тем самым способствует сокращению времени переключения триггера из одного устойчивого состояния в другое.
Несимметричный триггер может быть реализован на логических элементах. Для этого достаточно включить последовательно чётное число элементов НЕ и выход этой цепочки соединить со входом цепью обратной связи, образуемой резисторами R1 и R2 (Рисунок 53,а).
Рисунок 53 Триггер Шмита на логических элементах
Естественно, что при Uвх1>Uсрб на выходе схемы сохраняется состояние лог. «1».
Из соотношений (5.4) и (5.5) следует, что Uсрб>Uотп и, таким образом, амплитудная передаточная характеристика несимметричного триггера на ЛЭ имеет петлю гистерезиса. Вычитая (5.5) из (5.4), получаем
Откуда видно, ширина петли гистерезиса пропорциональна логическому перепаду ∆UЛ.
Несимметричные триггеры применяют в качестве формирователей импульсов прямоугольной формы при воздействии на вход, например, синусоидального напряжения (Рисунок 53,б).
Поскольку выходное напряжение резко возрастает при UВХ=UСРБ, то такие триггеры используют и в качестве компаратора напряжения — устройства, которое позволяет зафиксировать момент достижения сигналом некоторого заданного уровня.
Регистры
Регистры — это функциональные узлы на основе триггеров, предназначенные для приёма, кратковременного хранения (на один или несколько циклов работы данного устройства), передачи и преобразования многоразрядной цифровой информации.
В зависимости от способа записи информации (кода числа) различают параллельные, последовательные и параллельно — последовательные регистры.








































