какое санитарное значение имеют органические примеси в воде
Показатели органического загрязнения воды, их санитарное значение. Нормативы.
Азотсодержащие вещества могут быть и минерального происхождения. Это следует особо учитывать при исследовании артезианских вод, В таких случаях необходимо обращать внимание на наличие других показателей загрязнения, особенно на бактериологические показатели и величины окисляемости. Последняя будет высокой без нагревания воды, что также свидетельствует о минеральном происхождении данного показателя.
Однако высокая окисляемость при кипячении воды говорит о наличии в ней органических загрязнений.
Определение азота аммиака (аммонийных солей) (качественное с приближенной количественной оценкой)
Азот аммонийных солей в питьевой воде качественно и количественно определяют с помощью реактива Несслера, который дает желтое окрашивание в присутствии солевого аммиака.
В пробирку налить 1/3 исследуемой воды, прибавить 2-3 капли раствора сегнетовой соли для удержания солей Ca и Mg и 5 капель реактива Несслера. Через 10 мин определяют содержание аммонийного азота.
Определение азота нитритов
Принцип метода основан на образовании ярко окрашенных азокрасок при взаимодействии нитритов в кислой среде с реактивом Грисса. Наливают 1/2 пробирки испытуемой воды, прибавляет 10 капель реактива Грисса и нагревают на водяной бане 5 мин. Приближенное содержание определяют по таблице 2.
Определение азота нитратов
Принцип метода основан на переводе салициловой кислоты растворенного в воде азота нитратов в нитропроизводные фенола, образующие со щелочью соединения, окрашенные в желтый цвет.
Качественная реакция: в пробирку налить 1/3 исследуемой воды, прибавить 2 капли 8% раствора поваренной соли, добавить 4-5 кристаллов дифениламина, взболтать. По стенке пробирки осторожно прилить 10 капель концентрированной серной кислоты.
Наличие азота нитратов в воде дает образование синего кольца.
Определение окисляемости воды.
Под окисляемостью воды понимается потребность в кислороде, необходимая для окисления продуктов распада органических веществ растительного и животного происхождения, содержащихся в воде. Окисляемость выражается количеством мг кислорода, расходуемого на окисление веществ в 1 литре воды
Высокая окисляемость воды обусловлена наличием в ней продуктов распада органических веществ растительного и животного происхождения. В чистых питьевых водах окисляемость не превышает 2-4 мг кислорода на 1 л воды. В болотных водах при отсутствии азотсодержащих веществ допускается окисляемость до 5-6 мг/л, т.к. в подобной воде органические вещества содержат гумус (растительное коллоидное вещество), являющейся питательной средой для микроорганизмов.
Определение окисляемости воды проводится титрованным раствором марганцовокислого калия в кислой среде. Принцип этого метода основан на способности марганцовокислого калия в кислой среде в присутствии органических веществ выделять атомарный кислород, идущий на их окисление. Раствор марганцовокислого калия при этом обесцвечивается вследствие превращения KMnO4 в MnSO4. По количеству разложившегося KMnO4 вычисляют окисляемость.
0,01 н раствор KMnO4, 1 мл которого выделяет 0,08 мг кислорода;
0,01 н раствор щавелевой кислоты (1 мл которого идет на окисление 0,08 мг кислорода);
25% р-р серной кислоты.
Дата добавления: 2015-01-29 ; просмотров: 39 ; Нарушение авторских прав
Cостав воды
Показатели качества воды
Химически чистая вода с формулой Н₂О — это идеал, никогда не достижимый в природных условиях. Главное природное качество воды — универсальный растворитель, поэтому в ней постоянно присутствуют в растворенном виде различные соединения, элементы, ионы и газы. Количественный и качественный состав природной воды зависит от географических условий местности и строения водоносных горизонтов. Некоторое количество растворенной углекислоты из почвы позволяет воде воздействовать на минеральные соли, активно растворяя их по пути своего следования.
Когда вода просачивается через минеральные породы, она обогащается элементами, из которых они состоят. Если на пути воды есть известковые породы, вода обогащается известью, если доломитовые — магнием. Залежи каменной соли или гипса придают воде повышенные концентрации сульфатов и хлоридов, и такая вода считается минеральной.
Любой источник питьевого водоснабжения, в том числе частный колодец, должен быть исследован на показатели качества воды и ее пригодность для использования и питья. По закону «О санитарно-эпидемическом благополучии населения» от 19.04.91 года, санитарным правилам СанПиН 4630-88 и требованию ГОСТа 2874-82 «Вода питьевая» — вода хозяйственно-питьевого назначения относится к пищевым продуктам и должна соответствовать многочисленным санитарно-гигиеническим требованиям.
Показатели качества воды можно разделить на физические, химические и бактериологические.
Химические свойства воды
К ним относят следующие показатели:
Показатель pH показывает активность ионов водорода (или гидроксид-ионов). При pH=7 вода нейтральная, при pH меньше 7 — кислая, при pH больше 7 —щелочная.
Жесткость — комплексный показатель, в большей степени зависящий от концентрации в воде ионов кальция и магния. Количественно измеряется в мг-экв/л (миллиграмм-эквивалент на литр). Вода глубоких подземных источников имеет более высокую жесткость (8-10 мг-экв/л), а поверхностных источников — относительно небольшую (3-6 мг-экв/л).
Жесткая вода содержит много растворенных минеральных солей, что при нагревании приводит к образованию накипи. Накипь— твердый нерастворимый осадок на внутренних стенках водопроводных труб, котлов, бытовых нагревательных приборов.
Жесткость воды доставляет много проблем в быту: при стирке и умывании моющие средства хуже пенятся, при готовке еды плохо развариваются овощи, ухудшается вкус напитков.
Вода считается пригодной для питья, если ее жесткость не превышает 7-10 мг-экв/л.
Излишне мягкая вода (менее 1,5 мг-экв/л), также неполезна для здоровья. Такая вода при регулярном употреблении способна вымывать из организма жизненно необходимые ионы кальция, что может привести к остеопорозу, кариесу, сердечно-сосудистым заболеваниям. Это относится и к дождевой воде, которая идеальна для стирки и мытья, но не рекомендуется для регулярных пищевых целей.
Окисляемость характеризует содержание в воде растворенных органических соединений. Высокие показатели окисляемости означают, что вода сильно загрязнена бытовыми стоками. Недопустимо, чтобы в колодец попадали сточные воды с содержанием белков, жиров и углеводов, эфиров, органических кислот, фенолов, нефти, спиртов и т.п.
Повышение солесодержания ухудшает вкусовые качества воды — она становится горькой или излишне соленой.
Органолептический порог ощущений для хлоридов 350 мг/л, для сульфатов 500 мг/л. Нижний предел солесодержания для питьевой воды, при котором не оказывается негативного воздействия на физиологические процессы в организме —100 мг/л.
Оптимальный диапазон солесодержания в питьевой воде 200-400 мг/л. Содержание ионов кальция должно быть не меньше 25 мг/л, ионов магния — не меньше 10 мг/л.
Физические свойства воды
К ним относят следующие показатели:
Температура колодезной воды должны находится в диапазоне 7-12°С. Если вода теплее, она перестает быть освежающей. Вода холоднее 5°С становится опасной для здоровья из-за риска получить простудное заболевание.
Цветность — это посторонняя окраска воды. Цветность является нежелательным органолептическим показателем. Количественно цветность оценивают в градусах платиново-кобальтовой шкалы.
Мутность — видимое содержание в воде взвешенных веществ. Мутность измеряют в мг/л. Как правило, чистая артезианская и колодезная вода имеет малую мутность.
Присутствие в воде растворенной органики отрицательно влияет на органолептические показатели качества воды. Вода может приобретать посторонний неприятный запах — гнили, земли, рыбы, запах нефтепродуктов, хлорфенола и т.п. Одновременно наблюдается увеличение цветности и повышенная вспениваемость, что в итоге оказывает неблагоприятное воздействие на человека и живые организмы.
Исследованиями установлено, что изменения физических свойств питьевой воды оказывают заметное физиологическое воздействие на организмы: изменяется секреция желудочного сока, повышается или понижается острота зрения, изменяется частота сердечных сокращений.
Бактериологические показатели воды
Бактериологические показатели нормируют содержание в воде бактерий и патогенных микроорганизмов. Микробное число — это число бактерий, содержащееся в 1 мл воды. Для водопроводной воды этот показатель не должен превышать 100.
В поверхностные источники водоснабжения бактерии и микроорганизмы попадают вместе со сточными водами и дождевыми стоками, с животными. Вода из артезианских источников отличается низкими показателями бактериального загрязнения (микробное число не более 30).
Бактерии разделяют на патогенные (болезнетворные), и сапрофитные (осуществляющие переработку отмерших растительных или животных организмов).
Косвенный показатель бактериологического загрязнения воды определяется по содержанию в ней бактерии кишечной палочки. Единица измерения — коли-титр или коли-индекс. Коли-титр — это объем воды (в мл) в котором содержится одна единица кишечной палочки. Для питьевой воды коли-титр должен быть равен 300 или более. Коли-индекс — показатель, обратный коли-титру, или число кишечных палочек, содержащихся в 1 л воды. Коли-индекс для питьевой воды — не более 3.
Органические загрязнители воды
Сегодня мы рассказываем все, что вы хотели знать об органических загрязнителях воды.
Органические загрязнители воды
Помимо неорганических веществ (железо, марганец, фториды) в воде содержатся и органические вещества. В нашем блоге вы узнаете о видах органических загрязнителей и о том, как обнаружить их превышение.
Источники загрязнения воды:
Выделяют 3 основных вида источников загрязнения воды:
Влияние органических загрязнителей на здоровье человека
Существует множество заболеваний, вызванных загрязнением воды. Например, умываясь зараженной водой, можно заболеть коньюктивитом. Моллюски и водоросли, живущие в воде, могут вызвать шистосоматоз(лихорадка, боли в печени).
Как определить количество органических веществ в воде
Величина, характеризующая содержание в воде органических и минеральных веществ называется окисляемостью. Для оценки химического потребления кислорода, т.е. окисляемости воды, используют бихроматный и перманганатный метод. Определение бихроматной окисляемости требует довольно продолжительного времени, поэтому для массового контроля работы очистных сооружений он малоудобен. Именно перманганатная окисляемость регламентирует качество питьевой воды согласно СанПиН.
Что такое перманганатная окисляемость?
Перманганатная окисляемость — показатель, получаемый для оценки ХПК перманганатным методом, иными словами, это показатель общего количества органических веществ в воде. Перманганатная окисляемость выражается в миллиграммах кислорода, пошедшего на окисление этих веществ, содержащихся в 1 дм3 воды. Данный показатель не называет органические вещества, содержащиеся в воде, а говорит лишь о превышении их количества.
Признаки превышения пермаганатной окисляемости
Первым признаком переизбытка органики являются водоросли. Их можно обнаружить на внутренних стенках унитаза, на ощупь они напоминают слизь. Если вы чувствуете гнилой запах, исходящий из раковины или другой сантехники, наверняка перманганатная окисляемость превышена.
Передельно допустимая концентрация
Согласно СанПиН ПДК питьевой воды по перманганатной окисляемости 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» составляет 5,0-7,0 мг/дм3. Чтобы узнать пермаганатную окисляемость воды в вашем доме, рекомендуем сделать анализ, который вы можете заказать на нашем сайте vodalab. Если в результате анализа пробы воды этот показатель превышает ПДК, то такая вода требует очистки.
Вы можете заказать анализ воды на перманганатную окисляемость, заполнив соответствующую форму здесь или позвонив по телефону +7(495)150-15-93.
Органические загрязнители, БПК и ХПК
Введение
В воде источников водоснабжения обнаружено несколько тысяч органических веществ разных химических классов и групп. Органические соединения природного происхождения (гуминовые вещества, различные амины и другие) — способны изменять органолептические свойства воды, и по этой причине они должны быть удалены в процессе водоподготовки.
Несомненно, что органические вещества техногенного происхождения при поступлении их с питьевой водой могут неблагоприятно действовать на организм. Аналитический контроль их содержания в питьевой воде затруднен не только ввиду громадного их числа, но и вследствие того, что многие из них весьма неустойчивы и в воде происходит их непрерывная трансформация. Поэтому при аналитическом контроле невозможно идентифицировать все органические соединения, присутствующие в питьевой воде.
Однако многие органические вещества обладают выраженными органолептическими свойствами (запахом, вкусом, цветом, способностью к пенообразованию), что позволяет их выявить и ограничить их содержание в питьевой воде. Примерами таких веществ являются: синтетические поверхностно-активные вещества (СПАВ), в незначительных (нетоксических) концентрациях образующие пену; фенолы, придающие воде специфический запах; многие фосфорорганические соединения.
В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главным образом со сточными водами и дождевыми поверхностными смывами с почвы.
БПК и ХПК
Интегральное содержание органических веществ оценивается по показателям БПК и ХПК.
Биохимическое и химическое потребление кислорода — БПК и ХПК , принятые в гигиене, гидрохимии и экологии, интегральные показатели, характеризующие содержание в воде нестабильных (неконсервативных) органических веществ, трансформирующихся в воде путем гидролиза, окисления и других процессов. Содержание таких веществ выражается через количество кислорода, необходимое для их окисления в резко кислой среде перманганатом (БПК) или бихроматом (ХПК). К таким веществам относят алифатические кислоты, некоторые эфиры, амины, спирты.
В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием CO2. При этом на окисление потребляется растворенный в воде кислород (РК). В водоемах с большим содержанием органических веществ большая часть кислорода потребляется на биохимическое окисление, лишая, таким образом, кислорода другие организмы. Поэтому увеличивается количество организмов, более устойчивых к низкому содержанию кислорода, исчезают кислородолюбивые виды. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации кислорода, и эта убыль косвенно является мерой содержания в воде органических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органических веществ, называется биохимическим потреблением кислорода (БПК).
БПК — это количество кислорода в (мг), требуемое для окисления находящихся в 1 литре воды органических вещества в аэробных условиях, без доступа света, при 20 °С, за определённый период в результате протекающих в воде биохимических процессов.
Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (то есть в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления. Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1) °С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК5). Может определяться также БПК10 за 10 суток и БПКполн. за 20 суток (при этом окисляется около 90 % и 99 % органических веществ соответственно). Ориентировочно принимают, что БПК5 составляет около 70 % БПКполн., но может составлять от 10 % до 90 % в зависимости от окисляющегося вещества. Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света.
В поверхностных водах величина БПК5 колеблется в пределах от 0,5 до 5,0 мг/л; она подвержена сезонным и суточным изменениям, которые, в основном, зависят от изменения температуры и от физиологической и биохимической активности микроорганизмов. Весьма значительны изменения БПК5 природных водоемов при загрязнении сточными водами.
Таблица 1. Величины БПК5 в водоемах с различной степенью загрязненности
Степень загрязнения (классы водоемов) | БПК5, мг O2/дм 3 |
---|---|
Очень чистые | 0,5–1,0 |
Чистые | 1,1–1,9 |
Умеренно загрязненные | 2,0–2,9 |
Загрязненные | 3,0–3,9 |
Грязные | 4,0–10,0 |
Очень грязные | 10,0 |
Норматив на БПКполн. не должен превышать: для водоемов хозяйственно-питьевого водопользования — 3 мг/л для водоемов культурно-бытового водопользования — 6 мг/л. Соответственно можно оценить предельно-допустимые значения БПК5 для тех же водоемов, равные 2 мг/л и 4 мг/л.
Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью или ХПК. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая.
Являясь интегральным (суммарным) показателем, ХПК в настоящее время считается одним из наиболее информативных показателей антропогенного загрязнения вод. Этот показатель, в том или ином варианте, используется повсеместно при контроле качества природных вод, исследовании сточных вод и др. Результаты определения окисляемости выражаются в миллиграммах потребленного кислорода на 1 литр воды (мгО/л).
В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).
В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока.
Таблица 2. Величины ХПК в водоемах с различной степенью загрязненности
Степень загрязнения (классы водоемов) | ХПК, мг О/дм 3 |
---|---|
Очень чистые | 1 |
Чистые | 2 |
Умеренно загрязненные | 3 |
Загрязненные | 4 |
Грязные | 5–15 |
Очень грязные | >15 |
Однако не все органические вещества в равной степени участвуют в реакции химического окисления. Так же, как и при биохимическом окислении, при химическом окислении можно выделить группы легко, нормально и тяжело окисляющихся органических веществ. Поэтому всегда существует разница между теоретически возможным и практически достигаемым значениями ХПК. Мешают точному определению ХПК в первую очередь, хлорид-анионы, как правило, содержащиеся в природных и, особенно, в сточных водах. Определению также мешают нитриты, часто присутствующие в водах, прошедших биохимическую очистку.
Нормативы на ХПК в воде водоемов: для питьевой воды – 5,0 мгО/л (для перманганатной окисляемости), ХПК – 15 мгО/л.
Очистка воды от примесей в загородном доме
Самые распространённые примеси, ухудшающие качество воды
Вредные примеси в воде это – железо, марганец, свинец, хлор, соли двух щелочноземельных металлов кальция и магния, называемые солями жесткости, бактерии и вирусы, органические примеси различной природы, сероводород.
Учитывают также органолептические факторы – цвет, мутность, запах, вкус. Если они оцениваются как недостаточные, то требуют очистки и от них тоже. Однако именно содержание примесей в воде, перечисленных выше, влияет на появление органолептических факторов. Все зависит от состава именно этой воды. И в одной воде цвет дает железо различных форм, а в другой органические примеси, одна вода мутная из-за органики, а другая от солей жесткости.
В каждой конкретной ситуации нужно тщательно исследовать, какие примеси в воде, особенно если она питьевая. Возможно более 1000 различных примесей, порядка 250 часто встречающихся, и по 60 основным параметрам желательно исследовать воду. Но, важно то, что технологии очистки указанных в первом абзаце примесей почти наверняка удалят примеси, которые обычно не указывают в стандартном усеченном анализе водопроводной или природной воды.
Жесткая вода – вода, в которой присутствуют в большом количестве растворенные соли кальция и магния, т.е. щелочноземельные металлы, которые в природе распространены достаточно широко. Эти соли называют солями жесткости. Они образуют накипь, камни в почках, отложения солей в костях, вредят бытовым приборам и сантехническому оборудованию. В России содержание солей жесткости ограничено показателем 7 мг-экв./л. для питьевой воды. Поэтому крайне необходима очистка воды от примесей.
Железистая вода – вода в которой суммарное содержание железа любых форм превышает показатель 0,3 мг./л. Железистая вода имеет негативные органолептические характеристики, запах, цвет, привкус. Железистая вода может привести к заболеваниям крови и сосудов, вызывать аллергические реакции. Кроме того, железо способно вредить сантехническому оборудованию, на выстиранном белье могут оставаться грязные пятна, серьезный ущерб может быть нанесен бытовой и промышленной электротехнике. Хлорированная вода – хлор сильный окислитель, на полях сражений в первую мировую войну использовался как боевое отравляющее вещество. В современной водоочистке и водоподготовке используется для окисления примесей и обеззараживания от микроорганизмов. Отрицательно влияет на микрофлору кишечника, подавляя иммунную систему человека. Хлор, являясь сильным аллергеном и вредной примесью в воде, способен провоцировать усиление прочих аллергий, вызываемых другими аллергенами. В городской водоочистке добавляется в воду с запасом, для обеспечения гарантированного обеззараживающего эффекта воды, транспортируемой по трубам к потребителю. Особенно много, по некоторым оценкам до 6-ти норм дозируется в воду в периоды сильных ливневых дождей и в период таяния снегов.
Еще одной примесью питьевой воды выступают соли свинца, очень токсичного металла, растворены в воде и потребители получают его прямо из крана. Основной источник появления свинца в воде, помимо общего промышленного загрязнения атмосферы, воды и почвы, свинцовые прокладки в старых водопроводных магистралях. Повсеместное использование свинца в настоящее время уже закончено, но в старых трубопроводах прокладки из свинца широко использовались как надежные и долговечные. Поэтому свинец чаще всего появляется в водопроводной воде уже после очистки воды на водоочистительных станциях.
Бактерии – одноклеточные микроорганизмы размером обычно в диапазоне от двух десятых до десяти микрон. Бактерии, чаще всего одноклеточные, относят к бесхлорофилльным растениям. Заболевания, вызванные бактериальным заражением, лечат антибиотиками. Они достаточно крупные и большинство компаний производителей для очистки воды от бактериальных примесей используют механические фильтры малой пористости.
Вирусы – форма жизни, значительно отличающаяся от бактерий. Это принципиально другие организмы, проникающие внутрь клетки, размножающиеся внутри клеток. На вирусы не действуют антибиотики, в здравоохранении для борьбы с вирусными заболеваниями используют исключительно иммуномодулирующие препараты. Трудноудаляемые из-за своего малого размера от 20 до 300 н.м. (нанометров или миллимикрон), они даже не наблюдаются в обычные микроскопы, их изучают с помощью мощных электронных микроскопов. Способны вызывать серьезные заболевания. В бытовой водоочистке питьевой вирусы удаляют кипячением, обратным осмосом, химическим обеззараживанием или фильтрами серии Арагон БИО, как одним из самых выгодных по себестоимости устройств для очистки воды от примесей и вирусов.
Вредной примесью в воде является кальций – серебристо-белый щёлочноземельный металл, химически активный, широко распространен в земной коре. Слишком много кальция – мочекаменная болезнь, остеопороз, отложения солей в суставах. Недостаток кальция в организме приводит к ломкости костей, заболеваниям зубов, рахиту. А согласно исследованиям некоторых специалистов недостатки кальция или его отсутствие в воде увеличивают риск возникновения серьезных сердечно-сосудистых заболеваний.
Магний – примесь питьевой воды, высокая концентрация которого обнаружена в сером и белом веществе головного мозга, входит в состав нервных клеток. Магний – это здоровье нервной системы. Недостаток магния вызывает невралгические заболевания – мигрени, бессонницу, ощущение постоянной усталости, приводит к увеличению уровня стресса, депрессиям. Слишком много магния – высокая нагрузка на нервную систему, человек агрессивен, склонен к неоправданному риску.
Сероводород – сопровождается запахом тухлых яиц. Сероводород очень опасен, его часто сравнивают по опасности с синильной кислотой. При небольших концентрациях сероводорода происходит воспаление дыхательных путей и легких, раздражение и воспаление глаз. Опасен тем, что при больших концентрациях перестает ощущаться, а при высоких концентрациях способен вызвать потерю сознания, остановку сердца, паралич дыхательных нервов. В водоочистке схема удаления от сероводорода отработана давно и надежно. Чаще всего используют аэрационные комплексы напорной или безнапорной аэрации, либо специализированные фильтрующие загрузки фильтров.
Марганец – часто идет вкупе с железом. Российская норма такой примеси в питьевой воде не более 0,1 мг./л. Постоянное употребление воды с малыми концентрациями марганца приводит к ухудшению интеллектуальных способностей, может быть причиной возникновения серьезных заболеваний костной системы. Марганец в различных формах используют в водоочистке, но должно происходить его полное удаление в конечной воде. Методы удаления используются как и для всех растворенных примесей.
В статье описаны наиболее часто встречающиеся вредные примеси. Описать подробно все вредные примеси в воде невозможно. Положительным моментом является тот факт, что большинство примесей удаляется при удалении вышеперечисленных. Обращайтесь к профессионалам, пейте чистую, здоровую и полезную воду, будьте здоровы.
Закажите консультацию специалиста компании Гейзер
Остались вопросы? Мы всегда готовы предоставить консультацию по всем вопросам очистки воды!