какое разрежение во впускном коллекторе

Решение проблемы с высоким давлением во впускном коллекторе, плохим запуском двигателя и просадкой оборотов

какое разрежение во впускном коллекторе

Всем привет!
Давно меня мучает проблема плохого запуска двигателя, особенно когда горячая машина постоит 15-20 минут. К тому же, уже продолжительное время меня мучает просадка оборотов на горячем двигателе после остановки на светофоре до 600 об/мин и постепенным выравниванием до 700 об/мин.
Сразу скажу, что пробовал ставить разные оригинальные РХХ, проблему это никак не решало! Месяц назад я решил подключиться к компьютеру и посмотреть параметры работы двигателя и именно там я увидел отклонения в давлении во впускном коллекторе и времени впрыска форсунок…

Хочу поделиться опытом борьбы с повышенным давлением во впуске! На самом деле, очень серьезная проблема! Кому лень читать, то решение проблемы в самом конце записи!

И так, начну с симптомов:
1. Повышенное давление во впускном коллекторе 40-41кПа (при положенных 28-30кПа или 4.2psi).
2. Повышенное время впрыска форсунок 2.8мс (при положенных 2.0мс).
3. Плохая заводка машины, долго крутит стартером. Особенно плохо заводится на горячем двигателе после простоя 15-20 минут.
4. Просадки оборотов после полного прогрева на светофорах после торможения до 550-600об/мин.
5. Легкие вздрагивания двигателя на холостом ходу.

Изучив Drive2 и мнения мотористов были выявлены основные причины, по которой давление во впуске может быть повышенным:
1. Сбитые метки ГРМ.
2. Люфт шестерни и бабочки коленвала.
3. Противодавление в выпускной системе, создаваемое умершим катализатором.
4. Неполадки ДПКВ, ДПРВ или ДАД.
5. Негерметичное закрытие впускных клапанов (выработка или раковины на шейках клапанов).
6. Проблемы с топливной системой.
7. Неучтенный воздух (подсос во впуск после дросселя).

Первым делом я проверил в автосервисе Nippon43, где я обычно обслуживаюсь метки ГРМ и люфт шестерни коленвала. Там все идеально!

какое разрежение во впускном коллекторе

Затем ребята выбили мне второй катализатор, и вварили вместо первого катализатора пламегаситель, а вместо второго катализатора — резонатор.

Источник

Диагностика давления во впускном коллекторе

какое разрежение во впускном коллекторе

какое разрежение во впускном коллекторе

Итак наверное напишу про самый легкий способ диагностики, если нет ничего под рукой, конечно точность такого измерения не может быть большой, но диагностировать состояние мотора можно, развиваться в путях диагностики и кодирования всегда нужно есть что то новое чего не знаешь, итак приступим, нудятины много…

какое разрежение во впускном коллекторе

Введем базовые понятия, так как я вывел их для себя:

Атмосферное давление (барометрическое давление обычно 760 мм ртутного столбя при 0 ℃ равно 100 кРа (100 кило Паскалей), 1000 Hpa (1000 гекто Паскалей) или 1 Бар. (всегда приходиться переводить могут быть и другие единицы измерения), но учтите что давление является переменным с высотой и погодой.

Абсолютное давление — это давление ниже атмосферного, в вакууме равно нулю. Для абсолютного давления нолем является отметка при переходе вакуума в давление, таким образом, его значение можно получить – измерив, давление плюс атмосферное давление.
Абсо­лютное давление на планете земля, это суммарное давле­ние, воздействующее на вещество, или другими словами это сумма атмо­сферного (барометрического) и избыточного давлений.
-приборное или избыточное («действующее», «манометрическое») давление измеряется относительно атмосферного, или:
-ноль приборного (избыточного) давления равен атмосферному давлению, или
абсолютный вакуум равен «минус одной атмосфере» приборного (избыточного, манометрического) давления и, при этом, равен нулю абсолютного давления.

wikipedia
Абсолю́тное давле́ние ─ это истинное давление сплошных масс (жидкостей, паров и газов), отсчитываемое от абсолютного нуля давления ─ абсолютного вакуума. Абсолютный нуль давления макроскопических объёмов вещества практически недостижим, так как любое твёрдое тело образует пары, да и космическое пространство также не представляет собой абсолютную пустоту, лишённую вещества, поскольку содержит водород в количестве нескольких молекул на кубический сантиметр.

Различают также избыточное или манометрическое (приборное) давление и давление окружающей среды (в земных условиях ─ атмосферное давление. Избыточное давление представляет собой разность абсолютного давления и давления окружающей среды. Эта разность может быть как положительной, так и отрицательной. В последнем случае её называют разрежением или вакуумом, а избыточное давление – остаточным. Измерение абсолютного давления в земных условиях связано с определёнными трудностями.

Проще говоря наш датчик машины покажет 200 kPa если датчик замеряет относительно вакуума в машине, а прибор по отношению к барометрическому давлению 100 kPa или проще говоря 1 bar… абсолютное давление.

Также в моторе с наддувом давление может называться избыточным, превышающим атмосферное более 100 kpa, для избыточного давления нолем является давление атмосферного воздуха, это давление представляет собой разность абсолютного давления и давления окружающей среды таким образом, его значение равно абсолютному давлению минус атмосферное давление. Отрицательные знаки обычно опускаются. Тоесть 140-100 = 40 избыточное давление, обычно как сказано выше идет с плюсом +40 kPa. Эта разность может быть как положительной, так и отрицательной (вакуум либо избыточное). Как уже было сказано выше…

При измерении давления можно в качестве начала отсчета брать давление, равное 0. Тогда измерянное давление называют абсолютным. Если же давление измеряется относительно атмосферного, то такое давление называют избыточным.

Чтобы не иметь дело с отрицательными величинами, величина вакуумметрического давления определяется как разность атмосферного и абсолютного давления

Разряжение это разница между атмосферным давлением и фактическим давлением во впускном коллекторе. Например 100 kpa — 30 kpa = 70 kpa разряжение во впускном коллекторе… Еще раз если абсолютное 40 то разряжение 60, это разница между атмосферным, всегда отнимаем от 100 kpa.
Давление или есть, или его нет (абсолютный вакуум), минусового давления не существует! Минус сделан чтобы мы понимали относительно чего измерение в диагностической программе! Этажи в доме с минусами не считаем))

какое разрежение во впускном коллекторе

Также стоит почитать комментарии тут тыц

Данный метод не лучший но позволяет узнать многое, дополняйте конечно многое зависит от клапанов, коллектора, фаз, но не повредит при покупке когда не хочется мерить компрессию))

Еще рекомендую ознакомиться

Выпуск отработавших газов из цилиндра четырёхтактного двигателя осуществляется через канал, открывающийся при помощи выпускного клапана и соединяющий таким образом внутренний объём цилиндра с выпускным коллектором двигателя. Перетекание отработавших газов из цилиндра в выпускной коллектор происходит за счёт «выталкивания» газов из цилиндра поршнем, который во время такта выпуска движется по направлению к головке блока цилиндров.

Поступление новой порции топливовоздушной смеси в цилиндр четырёхтактного двигателя осуществляется через канал, открывающийся при помощи впускного клапана и соединяющий таким образом внутренний объём впускного коллектора двигателя с внутренним объёмом цилиндра. Перетекание топливовоздушной смеси из впускного коллектора в цилиндр происходит за счёт «засасывания» газов из впускного коллектора поршнем, который во время такта впуска движется по направлению от головки блока цилиндров и создаёт в цилиндре разрежение.

Для многих двигателей, фаза впуска топливовоздушной смеси начинается ещё до того, как закончится фаза выпуска отработавших газов. То есть, кратковременно, оба клапана одного и того же цилиндра – и выпускной и впускной – находятся в приоткрытом состоянии. Временной промежуток между моментом открытия впускного клапана и моментом закрытия выпускного клапана называется фазой перекрытия клапанов. Начало и конец фазы перекрытия клапанов находят своё отражение на графике пульсаций разрежения во впускном коллекторе в виде характерных точек и участков графика. Предлагаемая методика основана на их обнаружении и измерении их взаимного положения.

Итак сложная версия такой диагностики при помощи осцилографа (источник injectorservice.com.ua:

Методика оценки состояния клапанного механизма двигателя по пульсациям разрежения во впускном коллекторе работающего двигателя предполагает, что впускной клапан диагностируемого двигателя открывается раньше, чем закрывается выпускной клапан. Так же предполагается, что диагностируемый двигатель не оснащён турбонаддувом / компрессором.

Описание формы и характерных точек графика пульсаций разрежения во впускном коллекторе работающего двигателя.

За счёт того, что начало и конец фазы перекрытия клапанов всех цилиндров двигателя определённым образом отражаются на графике пульсаций разрежения во впускном коллекторе, по характерным точкам этого графика можно обнаружить моменты начала открытия впускных клапанов и моменты закрытия выпускных клапанов. Начало фазы перекрытия клапанов и её окончание отражается так же и на графике давления в цилиндре – но только для того цилиндра, график давления в котором исследуется при помощи датчика Px.

какое разрежение во впускном коллекторе

Графики пульсаций разрежения во впускном коллекторе работающего двигателя (показан зелёным цветом) и давления в одном из цилиндров (показан синим цветом).
1 – Момент открытия впускного клапана цилиндра, график давления в котором показан синим цветом.
2 – Момент закрытия выпускного клапана цилиндра, график давления в котором показан синим цветом.
3 – Такт выпуска отработавших газов из цилиндра, график давления в котором показан синим цветом.
4 – Такт впуска свежей порции топливовоздушной смеси в цилиндр, график давления в котором показан синим цветом.
360° – Точка ВМТ 360° цилиндра, график давления в котором показан синим цветом.

Участок между началом фазы перекрытия клапанов и точкой ВМТ 360°.

Как видно по графику давления в цилиндре (график синего цвета), за счёт возникшего оттока газов из цилиндра во впускной коллектор, давление внутри цилиндра начинает несколько снижаться. Но величина этого снижения давления внутри цилиндра с момента начала фазы перекрытия клапанов и до точки ВМТ 360° незначительна по следующим причинам:

-поршень по-прежнему движется по направлению к головке блока цилиндров, уменьшая за счёт этого величину внутреннего объёма цилиндра; это уменьшение величины внутреннего объёма цилиндра несколько компенсирует падение давления газов внутри цилиндра, возникающее из-за утечки газов во впускной коллектор;

-выпускной клапан всё ещё открыт, и внутренний объём цилиндра за счёт этого продолжает сообщаться с выпускным коллектором, где давление близко к атмосферному; поэтому, падение давления газов внутри цилиндра, из-за их утечки во впускной коллектор, компенсируется за счёт «подсоса» газов в цилиндр из выпускного коллектора.

Вследствие «подсоса» газов из цилиндра во впускной коллектор, давление газов внутри впускного коллектора непрерывно возрастает (разрежение падает).

Как видно из приведённой иллюстрации, положение точек пересечения передних фронтов графика пульсаций разрежения во впускном коллекторе (график зелёного цвета) с нулевой линией графика (с линией, отмечающей уровень смещения сигнала по постоянному напряжению) по времени может совпадать или приближаться к моменту, когда поршень цилиндра, график давления в котором показан на иллюстрации синим цветом, находится в положении ВМТ 360° (конец такта выпуска и начало такта впуска). Это позволяет принимать точки пересечения переднего фронта графика пульсаций разрежения во впускном коллекторе с нулевой линией графика за моменты, когда поршни двигателя находятся в положении ВМТ 360°. Положение этих точек на графике с приемлемой точностью совпадает с моментами, когда поршни двигателя находятся в положении ВМТ 360°.

Участок между точкой ВМТ 360° и концом фазы перекрытия клапанов

Заметное снижение давления внутри цилиндра (нарастание разрежения) начинается с точки ВМТ 360° и продолжается до конца фазы перекрытия клапанов. Это происходит по следующим причинам:
выпускной клапан закрывается, и величина притока газов из выпускного коллектора в цилиндр из-за этого всё более ограничивается;
поршень изменил своё направление движения на противоположное – теперь он движется по направлению от головки блока цилиндров и величина внутреннего объёма цилиндра увеличивается; из-за этого увеличения величины внутреннего объёма цилиндра газы внутри цилиндра разрежаются (давление газов внутри цилиндра уменьшается);
впускной клапан продолжает открываться, сообщение внутреннего объёма цилиндра с внутренним объёмом впускного коллектора улучшается; а так как газы во впускном коллекторе значительно более разрежены нежели в цилиндре, процесс перетекания газов из цилиндра во впускной коллектор продолжается. Процесс перетекания газов из выпускного коллектора в цилиндр, а из цилиндра во впускной коллектор продолжается вплоть до самого конца фазы перекрытия клапанов (до момента полного закрытия выпускного клапана).

Из-за постоянного притока газов из выпускного коллектора в цилиндр а оттуда во впускной коллектор, давление внутри впускного коллектора продолжает повышаться (разрежение продолжает уменьшаться). Уменьшение разрежения во впускном коллекторе продолжается до момента полного закрытия выпускного клапана.

Конец фазы перекрытия клапанов

Только начиная с момента закрытия выпускного клапана, процесс «подсоса» газов во впускной коллектор из выпускного коллектора через приоткрытый выпускной клапан => внутренний объём цилиндра => приоткрытый впускной клапан прекращается.

Поршень при этом продолжает двигаться по направлению от головки блока цилиндров, увеличивая таким образом величину внутреннего объёма цилиндра. Увеличение внутреннего объёма цилиндра приводит к некоторому падению давления внутри цилиндра, которое компенсируется за счёт «засасывания» газов в цилиндр из впускного коллектора.

Таким образом, в момент закрытия выпускного клапана (в конце фазы перекрытия клапанов) приток газов во впускной коллектор из цилиндра прекращается и начинается отток газов из впускного коллектора в цилиндр. За счёт возникновения оттока газов из впускного коллектора в цилиндр, давление внутри впускного коллектора начинает уменьшаться (разрежение внутри впускного коллектора начинает нарастать). Момент начала увеличения разрежения во впускном коллекторе (график зелёного цвета) отмечен на иллюстрации маркером «2».
Примечание.

Следует отметить то, что высота подъёма клапанов во время фазы перекрытия клапанов незначительна – выпускной клапан уже почти закрыт, а впускной клапан только начал открываться. Соответственно, количество газов, перетекающих во время фазы перекрытия клапанов из выпускного коллектора во впускной коллектор, незначительно.

Источник

Какое разрежение во впускном коллекторе

©А. Пахомов (CTTeam, Школа Диагностики Алексея Пахомова).

какое разрежение во впускном коллектореВ своих обучающих курсах я почти не касался одного измерительного датчика, применяемого в мотортестерах. Речь идет о датчике давления/разрежения, имеющего предел примерно плюс-минус 1 Bar. В разных мотортестерах этот датчик имеет различные названия, но давайте в нашем разговоре будем называть его просто «датчик разрежения», потому что чаще всего измерять с его помощью приходится именно разрежение, то есть давление ниже атмосферного.

Итак, датчик разрежения.

Почему же я так мало уделял ему внимания? Дело в том, что обучение автодиагностов должно, с моей точки зрения, базироваться на принципе разумной достаточности. Поэтому нет смысла забивать начинающим голову не слишком важными моментами, требующими, однако, глубокого понимания и интуиции. А датчик разрежения – именно из этой оперы: чтобы его применять, нужно мыслить очень гибко и чувствовать работу двигателя буквально «на пальцах». Тогда получаемая с его помощью информация будет понятна. Но подобным умением могут похвастать лишь опытные диагносты, а никак не новички.

Вторая причина заключается в отсутствии общепринятых методик анализа осциллограмм, полученных с помощью датчика разрежения. Да, есть более или менее достоверные методики, но даже они не всегда применимы! Тем не менее давайте вспомним и перечислим их.

Очень полезна осциллограмма давления во впускном коллекторе при стартерной прокрутке. Эту проверку делать можно и нужно, с ее помощью легко и быстро обнаруживаются проблемы в механической части двигателя.

Можно оценить пульсации давления в картере двигателя и в выпускном тракте. Пожалуй, все!

Знатоки скажут: но ведь есть методика анализа давления во впускном коллекторе работающего двигателя! Да, есть. Но давайте вспомним, сколько в ней издержек. Начнем с того, что форма пульсаций давления сильно зависит от конструкции впускного коллектора. А это значит, что от двигателя к двигателю она будет менять свой вид. Как быть?

Не спорю, если вы работаете с одними и теми же автомобилями и двигателями (например, только «Газель»), то вид этой осциллограммы вы знаете наизусть и знаете, как выглядят на ней те или иные дефекты. А если сегодня у вас «Газель», завтра Volkswagen, а послезавтра Ford?

Далее, форма осциллограммы давления во впускном коллекторе зависит от точки присоединения датчика к коллектору. Зависит она и от длины соединительного шланга, через который датчик разрежения сообщается с внутренним объемом впускного коллектора.

Несомненно, виртуозы диагностики этот датчик в своей работе применяют, и весьма успешно. И сейчас мы рассмотрим один из интересных примеров его применения.

Подопытный

Однако ничто не вечно под Луной, и двигатель однажды огорчил владельца автомобиля нестабильной работой на холостом ходу и потерей мощности. Ну что ж, бывает…

По законам жанра, прежде чем автомобиль попал в руки профессионального диагноста, владелец три месяца скитался по сервисам в поисках помощи. Нужно ли говорить, что на двигателе уже заменены свечи, высоковольтные провода и наконечники, промыты форсунки. Руководствуясь лишь им одним понятной логикой, неизвестные мастера заменили бензонасос, при этом, правда, не поменяв топливный фильтр. Дважды был заменен лямбда-зонд, причем оба раза датчик устанавливался оригинальный. Апофеозом всего этого безобразия стало предложение заменить модуль зажигания.

Подобное предложение переполнило чашу терпения владельца, и он в очередной раз поехал искать, как говорят, «нормальную диагностику».

Итак, автомобиль перед нами. Заводим двигатель. Конечно, замена такого большого количества деталей облегчает нашу работу, однако торопиться не будем. Прежде всего, двигатель явно «подколбашивает» при работе на холостом ходу. Это видно и безо всякого диагностического оборудования. А у среза выхлопной трубы отчетливо прослушиваются характерные хлопки, указывающие на наличие пропусков воспламенения смеси в цилиндрах.

Если вплотную к глушителю поднести ладонь, то явно ощущается, что руку как будто несколько раз отталкивает, а потом один раз всасывает. И это повторяется хаотически. На самом деле рука, поднесенная к глушителю, это изумительный инструмент: опытные диагносты определяют так не только пропуски воспламенения в цилиндрах, но даже и разрушенный каталитический нейтрализатор.

Ну в нашем-то случае с нейтрализатором все в полном порядке, а вот пропуски воспламенения чувствуются, как сказал когда-то поэт, «весомо, грубо, зримо». Руководствуясь здравым смыслом, следующим шагом подключаем сканер и связываемся с блоком управления двигателем. Как бы это ни было странно, не обнаруживаем в его памяти никаких кодов, говорящих о пропусках! Как так? Это же Volkswagen! Неужели блок управления не фиксирует явные пропуски воспламенения в цилиндрах? Ладно, оставим эти рассуждения на потом и займемся поиском причин дефекта.

В принципе, уже все ясно, осталось лишь установить неисправный цилиндр и причину, приведшую к снижению его работоспособности. Напомню, что любое «троение» двигателя может быть вызвано всего тремя причинами:

Последовательность, в которой перечислены причины, выбрана неспроста. Как показывает практика, чаще всего пропуски воспламенения вызваны дефектами в элементах системы зажигания. Вторая по массовости причина – механические дефекты, и чаще всего это прогоревшие клапаны. Ну и последняя, встречающаяся наиболее редко, это форсунки: уход их характеристик наблюдается лишь на автомобилях с приличным пробегом.

Проверяем зажигание

Начнем поиск и прежде всего проверим систему зажигания. Следует заметить, что она здесь не совсем обычная:

какое разрежение во впускном коллекторе

Это система Distributorless Ignition System (DIS), но модуль зажигания хитрый: две катушки объединены в один корпус и установлены прямо на свечи четвертого и третьего цилиндров через наконечники. Модуль прикручен болтами к клапанной крышке, а поверх него располагается коммутатор с огромным радиатором. Ко второму и к первому цилиндрам от катушек протянуты высоковольтные провода. Такая конструкция с точки зрения диагностики неудобна: затруднено снятие осциллограммы высокого напряжения в третьем и четвертом цилиндрах. Сложности добавляют еще и глубокие свечные колодцы.

Тем не менее после нескольких дополнительных манипуляций снимаем осциллограмму высокого напряжения и анализируем ее.

какое разрежение во впускном коллекторе

Но трудились не зря. Явно заметно, что напряжение пробоя в первом цилиндре ниже, чем в остальных. Коротко вспомним, от чего зависит напряжение пробоя искрового промежутка свечи. Это очень интегральный параметр, на который влияет целый ряд факторов. И один из самых важных факторов – давление в цилиндре в момент пробоя. Напряжение пробоя во многом зависит именно от него.

Запустив автоматический анализ осциллограммы с выводом результатов в виде графиков, обнаруживаем, что график напряжения пробоя в первом цилиндре располагается значительно ниже остальных:

какое разрежение во впускном коллекторе

А такое поведение графика может говорить только об одном: в первом цилиндре в момент искрообразования давление ниже, чем в остальных. Попросту говоря, в первом цилиндре снижена компрессия. Конечно, к такому же результату приведет, например, слишком малый зазор на свече, но свечи проверены и зазор там в норме.

Собственно, задача почти решена. Осталось поработать компрессометром, а лучше пневмотестером: он даст более достоверные результаты.

Развлекаемся

А давайте поэкспериментируем, благо, что клиентов в очереди больше нет, а мотортестер уже установлен под капотом автомобиля! Поработаем тем самым датчиком разрежения и посмотрим, как отображаются пропуски на осциллограммах давления во впускном коллекторе и в выпускном тракте. Попытаемся обнаружить связь между искрой первого цилиндра и отклонениями формы осциллограмм.

Решено! Первым делом соединяем датчик разрежения с полостью впускного тракта. Чем короче используемый для этого вакуумный шланг, тем лучше: будет меньше искажений формы давления. А чтобы видеть момент искрообразования в первом цилиндре, на его высоковольтный провод установим датчик синхронизации. Собственно, он там уже стоит, ведь незадолго до этого снималась осциллограмма высокого напряжения.

Прежде чем приступать к измерениям, вспомним основные моменты, связанные с формой графика давления во впускном коллекторе. Измерение производится при стартерной прокрутке, при этом запуск двигателя должен быть заблокирован, например, путем отключения форсунок. Осциллограмма давления похожа на синусоиду. В случае, когда в механизме газораспределения все исправно, синусоида ровная, а ее пики находятся примерно на одном и том же уровне.

Но если проблема в механизме есть, то график ведет себя так, как мы и получили:

какое разрежение во впускном коллекторе

Верхний график красного цвета – это давление во впускном тракте. Нижний график синего цвета показывает моменты искрообразования в цилиндрах. В нашем случае имеет место система DIS, и высокий импульс соответствует искре первого цилиндра, низкий – четвертого.

При стартерной прокрутке система управления двигателем формирует искру практически в ВМТ сжатия соответствующего цилиндра. Поэтому можно утверждать, что в моменты, отмеченные на иллюстрации и соответствующие моментам искрообразования, поршень первого цилиндра находился в ВМТ сжатия.

Коленчатый вал двигателя при прокрутке стартером вращается очень неравномерно. Максимальное замедление вращения происходит в районе ВМТ, причем чем выше компрессия в очередном цилиндре, тем сильнее замедление.

Важный момент. График давления во впускном коллекторе располагается выше или ниже в зависимости от угловой скорости вращения коленчатого вала. При прочих равных условиях, чем выше скорость вращения, тем ниже будет располагаться график давления (что эквивалентно большему значению создаваемого вакуума).

Это означает: если в каком-либо цилиндре компрессия снижена, то угловая скорость коленчатого вала при прохождении ВМТ этого цилиндра будет выше, чем в других, а соответствующий участок графика опустится вниз.

Вернемся к иллюстрации. Розовым фоном на ней выделены участки в окрестности ВМТ сжатия первого цилиндра. Они опустились вниз, значит, угловая скорость коленчатого вала в этот момент была выше, чем в соседних цилиндрах. А это значит, что компрессия в первом цилиндре ниже, чем в остальных. Все!

Еще, конечно, заметно, что и четвертый цилиндр тоже немного «хромает». Но видимо, не до такой степени, как первый, и пропусков воспламенения в нем пока не наблюдается.

Рассуждаем дальше. Снижение значения компрессии в цилиндре может происходить по двум причинам. Первая – это износ или залегание поршневых колец, сюда же можно отнести и прогар поршня. В результате наблюдается сильный прорыв газов из камеры сгорания в картер. Вторая причина – это прогар клапанов, и чаще всего выпускных, как более теплонагруженных.

Давайте посмотрим, как ведет себя давление картерных газов при работе двигателя и выясним, в чем именно заключается дефект первого цилиндра, в кольцах или в клапанах. Вот результат измерения:

какое разрежение во впускном коллекторе

Давайте проведем еще одно интересное измерение. А именно снимем осциллограмму давления отработавших газов. Сопоставив ее с моментами воспламенения, еще раз убедимся в том, что неисправность находится именно в первом цилиндре.

С практической точки зрения смысла в этом нет, ибо мы все уже доказали, но ради эксперимента и в целях самообразования – то, что надо.

Возникает проблема: провод датчика разрежения слишком короток для того, чтобы установить датчик в выхлопную трубу. Как вариант, можно установить ближе к трубе сам мотортестер, но тогда не дотягивается до нужного провода датчик первого цилиндра. А нам очень важно увидеть еще и момент искрообразования! Поэтому берем шланг от пылесоса, плотно одеваем его на выхлопную трубу, подтягиваем к передней части автомобиля и подготавливаем все для измерения.

Разумеется, шланг – причина лишних колебаний столба отработавших газов. Да и сам он тоже вибрирует, поэтому форма осциллограммы несколько страшноватая, но разобраться и сделать нужные выводы вполне возможно:

какое разрежение во впускном коллекторе

Видны периодические провалы графика давления, те самые «пух-пух-пух», которые ощущаются рукой и слышны ухом. Осталось выяснить, от какого это цилиндра. Но прежде чем это делать, немного порассуждаем.

Итак, представим себе, что мы установили датчик разрежения в самое начало выпускного тракта, рядом с выпускными клапанами. Ну, на место лямбда-зонда, например. Попробуем понять, как будут соотноситься между собой момент искрообразования и момент максимального давления в выпускном тракте.

Начнем с того, что на холостом ходу (не на всех двигателях, но на большинстве) искра возникает в диапазоне 0 °.. 10 ° перед ВМТ. Здесь все просто.

А когда возникает пик давления отработавших газов? Тут сложнее. Выпускной клапан (опять-таки не на всех двигателях, но на большинстве) открывается в районе 130 … 150 градусов после ВМТ сжатия. Иначе говоря, он открывается на такте рабочего хода. В момент его открытия отработавшие газы находятся под высоким давлением и начинают вырываться из цилиндра, не дожидаясь достижения нижней мертвой точки. Самое интересное то, что к моменту, когда поршень достигает НМТ, 80 % отработавших газов уже покинули цилиндр.

Эта фаза – от момента начала открытия выпускного клапана и до НМТ – называется фазой свободного выпуска. А так как почти вся масса отработавших газов покидает цилиндр за время фазы свободного выпуска, то логично предположить, что максимальное давление в выпускном коллекторе возникает где-то в конце этой фазы.

Иначе говоря, от момента воспламенения до момента максимального давления за выпускным клапаном проходит примерно 180 °, или четверть рабочего цикла двигателя. Это довольно грубый расчет, но в нашем случае такой точности вполне достаточно.

Значит ли это, что отсчитав на графике четверть рабочего цикла от искры некоего цилиндра, мы увидим всплеск (или провал в случае пропуска воспламенения) именно этого цилиндра? В случае, когда мы «сидим» прямо у выпускного клапана – да.

Но мы-то измеряем не у выпускного клапана, а у среза выхлопной трубы! И не просто у среза, а еще и на конце удлиняющего шланга. А ведь давлению-то нужно еще «добежать» до конца шланга, не так ли?

С какой скоростью распространяется волна давления в воздухе? Ответ прост: со скоростью звука, 330 м/с. Конечно, отработавшие газы – это не совсем воздух, но величина будет сравнимая. Шланг имеет длину 4 м, выпускной тракт автомобиля – ну, предположим, 6 м, он ведь от клапанов до среза трубы идет отнюдь не по прямой. Значит, волна давления «добегает» от клапана до нашего датчика разрежения примерно за 30 мс. Эту поправку мы тоже должны внести в измерение!

Возвращаемся к графику, чуть растянем его для удобства и проведем несколько несложных действий.

какое разрежение во впускном коллекторе

Ну что ж, задача решена еще одним способом.

Кто-то скажет: ну и зачем это все? Ведь можно было просто измерить компрессию в цилиндрах. Да, верно. Но пытливый ум диагноста требует своего применения и жаждет интересных рассуждений. Собственно, чем мы и занимались.

А дальше – накатанным путем к мотористу, на разборку двигателя. Вот что там обнаружилось:

какое разрежение во впускном коллекторе

Резюмируя, можно сказать следующее. Конечно, датчик разрежения – не самый необходимый диагносту инструмент. Пожалуй, датчик давления в цилиндре гораздо нужнее. К тому же датчик разрежения требует понимания того процесса, который вы пытаетесь им исследовать. Но тем не менее, с его помощью можно решать многие диагностические задачи и значительно облегчать свою работу.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *