какое притяжение на луне
Есть ли гравитация на Луне
Гравитация на Луне существенно слабее, чем на Земле — планете, которую сопровождает этот спутник. С данным обстоятельством и связано отсутствие атмосферы у первого небесного тела. Обладая крайне низкой гравитацией, оно не способно удерживать около себя даже газы. Наличие гравитационного поля у земного спутника подтверждает заснятый на видео эксперимент. В ходе него брошенные астронавтом перо и молоток падают на поверхность одновременно.
Притяжение Луны и Земли
Влияние земной гравитации на лунный ландшафт можно рассмотреть на примере лунных морей. На стороне спутника, обращенной к планете, их существенно больше — они составляют более 30% площади полушария. Для сравнения, на другом полушарии лунные моря занимают 2,5% площади поверхности.
Лунные моря представляют собой относительно ровные участки поверхности небесного объекта, залитые застывшей лавой и покрытые пылью. Скопление их на обращенной к Земле стороне ученые объясняют действием силы земного притяжения. Если бы не приливные силы Земли, то лава распределилась бы по поверхности небесного тела равномерно.
Гравитационные силы Луны оказывают влияние на Землю. В первую очередь сила лунного тяготения сказывается на водных массах.
В науке популярно утверждение, что с этим влиянием связаны морские приливы и отливы:
Научный мир не смущают некоторые парадоксы. Например, влияние Солнца на земную поверхность во много раз больше по сравнению с влиянием спутника. Однако причиной подъема и спада уровня моря считают не его, а Луну.
Неравновесная Луна
Ландшафт видимой с земной поверхности половины Луны существенно отличается от той половины спутника, которая обращена в обратную сторону.
Лунные моря на видимой стороне небесного тела занимают более трети поверхности, а на другой стороне — около 2,5% площади.
Имея более темную окраску, эти участки поверхности спутника отражают существенно меньше солнечной энергии. Значит, та сторона земного спутника, которая видна с поверхности планеты, отражает солнечной энергии намного меньше. Это явление может служить одним из примеров неравновесности 2 полушарий небесного тела.
Аномальная гравитация на Луне
Изучение гравитационного поля небесного тела проводилось посредством регистрации его влияния на орбиты искусственных спутников Луны. Данные, полученные космическими аппаратами «Луна-10» и «Лунар орбитер», не только помогли ответить на вопрос, есть ли гравитация на Луне, но и выявили ее особенности.
Исследования земного спутника показали, что гравитационное поле Луны неоднородно. Исследователи связывают эту особенность с концентрацией в толще лунных морей структур, имеющих высокую плотность. Ученые решили использовать для обозначения таких суперплотных фрагментов термин “масконы”. Высокая плотность этих геологических структур позволяет создавать выраженное возмущение в гравитационном поле земного спутника. Их действие на космические аппараты на лунной орбите способно влиять на курс космических объектов.
В ходе исследований космоса было обнаружено, что масконы и порождаемые ими гравитационные аномалии наблюдаются в тех областях, где располагаются ударные кратеры.
Механизм образования масконов научный мир связывает с накоплением и уплотнением материи космического объекта в той части кратера, которая погружена в мантию небесного тела. Сюда же, способствуя дальнейшему уплотнению, сползают и горные породы со склонов ударной воронки.
Другая теория образования лунных гравитационных аномалий указывает, что в области лунных морей образуется дополнительная сила притяжения. Это происходит в результате аккумулирования этими участками поверхности большего количества солнечный энергии. Ведь плоская, имеющая темный цвет поверхность быстрее и сильнее нагревается от солнечных лучей и гораздо медленнее остывает по сравнению с окружающим лунным грунтом.
Утверждается также, что некоторые из гравитационных аномалий связаны с упавшими и проникшими в лунную кору метеоритами, состоящими из вещества, имеющего высокую плотность.
Гравитация на Луне
Графическое представление разницы гравитации на Земле и Луне
Гравитация Луны – какая сила гравитации у спутника Земли. Узнайте, сколько человек весит на Луне, сравнение с Землей в фото, первые прыжки астронавтов Аполлона.
Постоянно переживаете по поводу своего веса? Зачем садиться на диету, если можно слетать к Луне, где гравитация намного ниже. Этот объект меньше нас по размеру и массе и фактически ваш вес будет составлять всего 17% от земного.
Лунная гравитация достигает всего 17% от земной. Мы используем такую же силу прыжка, что на Земле, и сможем подняться на 3 м в высоту, зависнув в воздухе на 4 секунды.
Допустим, вы весите 100 кг, а вот на спутнике – всего 17 кг. То есть, сила гравитации на Луне позволит вам прыгать намного выше, если точнее, то 2 метра станут для вас привычным делом. И вы бы стали настоящим Человеком Пауком, потому что падение с высоты дома на Луне напомнит прыжок со стола. Мяч пролетел бы в 6 раз дальше. В общем, на спутнике можно развлечься, так как лунная гравитация отличается от привычной земной.
Когда астронавты впервые ступили на Луну, то им пришлось переучиться ходить. Точнее, они просто смешно прыгали, напоминая кенгуру. Удивительно, но обычный шаг приводит к падениям. И последнее, гравитация на Луне настолько низкая, что при помощи искусственных крыльев, вы смогли бы совершить полет. Разве не круто? Рассмотрите верхний рисунок, чтобы запомнить, как выглядит гравитация Луны и Земли.
Почему Луна не падает на Землю: пояснения
Земля и Луна: Freepick
Почему Луна не падает на Землю? Наша планета обладает колоссальной силой притяжения, которую чувствует каждый человек. Неужели этой силы недостаточно, чтобы притянуть планету-спутник? Ученым удалось разгадать секреты Луны и дать ответ на этот вопрос.
Почему Луна не падает на Землю
Рассматривая на небосклоне спутник Земли, многие спрашивают себя, как происходит движение Луны по небу и почему она не падает на нашу планету?
Другие космические тела, а также космические аппараты часто падают. Какие же секреты есть у видимой нами планеты, вращается ли Луна и как ей удается удерживать свои позиции в космосе?
Земля и Луна связаны следующим образом:
Чтобы это понять, достаточно представить аттракцион из луна-парка, в котором лодочки-карусели двигаются по кругу. Можно ли переместиться в центр карусели во время вращения? Не выйдет: человек почувствует сильное отталкивание, как от давления в грудь или сильного ветра. Такой же эффект испытывает Луна во время движения вокруг Земли.
Или, например, что будет, если мячик толкать сразу в две разные стороны? Он не сдвинется с места. Вот так же и силы, притягивающие и отталкивающие Луну, находятся в равновесии и помогают ей в течение миллионов оставаться на своей «дорожке».
В то время как многие думают, что Луна приближается к Земле, на самом деле Луна отдаляется от Земли на 3–4 см каждый год. Траекторию движения нашего спутника описывают как спираль, которая медленно раскручивается. Происходит это по нескольким причинам.
Планета Земля и ее спутник: Freepick
Во-первых, из-за воздействия главной звезды Солнечной системы (Солнца). Она действует на Луну как магнит, причем сила воздействия больше той, какую на свой спутник оказывает Земля. Рассмотрим этот процесс подробнее:
Кроме того, удаление Луны — следствие так называемого приливного ускорения. Его смысл таков:
Может ли однажды остаться Земля без Луны? Ученые на этот вопрос отвечают отрицательно, и вот почему:
Действие физических сил (притяжения и отталкивания) — главная причина, почему планеты не падают. Только остановка движения космического объекта или механизма приводит к его падению.
Почему на Землю падают небесные тела
В космосе наряду с планетами и звездами есть различные объекты:
Когда такие метеороиды попадают в гравитационное поле Земли, то это меняет их траекторию движения — их притягивает к поверхности.
Отметим, что движение космических тел происходит на огромных скоростях. На входе в атмосферу цифры колеблются от 11 до 72 км/с. При трении о воздух они загораются и начинают светиться. Большинство метеороидов сгорает, не достигнув поверхности, крупные постепенно замедляются и остывают.
Дождь из метеоров: Freepick
То, что с ними произойдет дальше, определяется массой, начальной скоростью, углом входа в атмосферу:
В среднем в течение суток на Землю попадает примерно 5–6 тонн метеоритного вещества, о есть за год около 2000 тонн. Но большая часть сгорает в атмосфере, не достигнув поверхности нашей планеты. Многие падают в океаны или приземляются в малонаселенных областях. Очень редко метеорит падает в населенной местности, и у этого события оказывается много свидетелей.
Что происходит с космическими объектами, которые в космос запускают люди? Эти искусственные спутники должны вращаться вокруг планеты на четко заданной скорости и расстоянии, чтобы удерживаться на собственной орбите. На больших скоростях они будут вырываться из гравитационного поля и улетать во Вселенную, а на меньших — сойдут с орбиты и упадут вниз.
Для последнего варианта развития событий есть множество причин. Скорость передвижения спутников замедляют:
К падению таких аппаратов приводят просчеты ученых, которые их проектируют.
Но что бы ни происходило с рукотворными объектами, в Луне можно не сомневаться: она на Землю точно не упадет. Зная о том, почему Луна не падает на Землю, остается только восхититься тем, как точно и умело создано все в природе.
Узнавайте обо всем первыми
Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.
Существует ли гравитация на Луне?
Вам будет интересно: Существует ли гравитация на Луне?
Допустим, есть тело, вес которого на земле составляет 100 килограмм. Если поставить тот же самый объект на Луне на весы, то стрелка метнется всего лишь до отметки в 17 килограммов, а это означает, что благодаря низкой гравитации на Луне можно высоко подпрыгивать, словно мячик.
Снова обратимся к конкретному примеру для наглядности. Если на нашей планете вы способны подпрыгнуть на 30 сантиметров от поверхности земли, то с теми же усилиями в условиях лунного притяжения вы сможете подпрыгнуть на целых 2 метра. Кроме того, и падать на Луне намного мягче и приятнее, чем на Земле. Удара вы точно не почувствуете. А вот почувствовать, что летаете, сможете запросто.
Как передвигаются астронавты?
Первые люди, которые оказались на безжизненном спутнике Земли, наверняка не знали точно, какая гравитация на Луне. Поэтому когда они попали на поверхность спутника Земли, астронавтам пришлось передвигаться прыжками. Если бы они решили пройтись обычным привычным шагом, то наверняка бы упали. Однако из-за низкой гравитации на Луне каждый космонавт может почувствовать себя на короткий промежуток времени птицей, которая умеет летать. Мы уверены, что это потрясающее и ни с чем не сравнимое чувство, которое хотел бы испытать каждый человек.
Миф 1. В космосе нет гравитации
Глядя на космонавтов, можно предположить, что на международной космической станции они находятся в абсолютной невесомости. Отчасти это является правдой, но не стоит забывать, что и в космосе на них действует гравитационная сила Земли, которая удерживает искусственные и естественные спутники. Да, сила гравитации Земли столь сильна, что даже в космосе тянет к себе.
Единственным различием между отдельно взятым космонавтом и спутником является разница в их массе. Сила притяжения прямо пропорциональна этой величине, поэтому астронавты не падают на поверхность Земли и фактически не зависят от этого притяжения.
Миф 2. Парад планет уменьшит гравитацию нашей планеты
Второе небесное тело оказывает влияние на притяжение Земли именно за счет своей огромной массы и объема, хотя и расположено достаточно далеко от нашей планеты. Путем нехитрых математических вычислений можно прийти к таким цифрам: гравитация Венеры влияет на Землю в 50 миллионов раз меньше, а притяжение Юпитера в 30 миллионов раз меньше. Учитывая тот факт, что обе планеты располагаются по разные стороны от нашей, то во время парада планет они будут компенсировать силы притяжения друг друга, а значит земное притяжение не изменится.
Миф 3. Черные дыры разрывают объекты
Несмотря на то, что черные дыры до сих пор остаются загадкой для ученых, некоторые факты про них все же известны. По этой причине мы можем с уверенностью сказать, что они ни в коем случае не разрывают объекты вблизи себя, правда, при условии, что их масса не очень маленькая по космическим меркам. Важно понимать, что сила черных дыр прямо пропорциональна их размерам и габаритам тел, которые находятся вблизи них. Если рядом со сверхновой будет находиться звезда, масса которой равняется 10 массам солнца, то ее может разорвать. А в том случае, если ее масса близится к 1000 массам солнц, то дыра сможет только поглотить ее целиком.
Несмотря на большое количество научных заблуждений, ни в коем случае нельзя в них верить, нужно всегда проверять любую информацию в официальных и авторитетных источниках.
Заключение
Исходя из всего вышесказанного, остается надеяться, что данная статья была вам полезной, и вы с интересом прочитали ее до самого конца. Теперь вы точно знаете все самое важное о гравитации на Луне и других телах Солнечной системы. Нам остается только пожелать успехов в дальнейшем изучении новых и интересных фактов, которые помогут вам разобраться в том, как устроен наш мир.
Гришаев А.А.: Граница области тяготения Луны: анализ полётов в окололунном пространстве
Введение.
Известен ряд экспериментальных фактов, свидетельствующих о том, что тяготение Луны действует лишь в небольшой окололунной области. Так, у Земли отсутствует динамическая реакция на Луну: пара Земля-Луна отнюдь не обращается в противофазе около их общего центра масс, как того требует закон всемирного тяготения. Одно из главных неравенств в долготе видимого движения Луны, т.н. вариация, чисто геометрически обусловлено тем, что Луна движется по орбите вокруг некоторого условного центра, а Земля совершает около этого центра одномерные колебания – вдоль местного участка своей околосолнечной орбиты, с амплитудой около 4670 км и периодом в синодический месяц [1,2]. Что касается колебаний Земли поперёк своей орбиты, которые непременно имели бы место при полноценной динамической реакции на Луну, то эти колебания не обнаруживаются ни при радиолокации планет, ни при приёме импульсов пульсаров, ни при радиосвязи с автоматическими межпланетными станциями [2].
Вопреки догмату, к которому нас приучали ещё со школьной скамьи, отнюдь не тяготение Луны является причиной океанских приливов [2] – тем более что фактическая картина этих приливов имеет с картиной, предсказываемой на основе закона всемирного тяготения, весьма мало общего [3].
Согласно нашей модели [4], лунное тяготение организовано иначе, чем планетарное: оно лишь имитирует, в первом приближении, ньютоновское тяготение в небольшой окололунной области. Эта модель объясняет «странные» быстрые эволюции орбит искусственных спутников Луны, а заодно и поразительные оптические явления – например, аномально большие неопределённости моментов покрытия звёзд Луной, а также феномен обратного рассеяния света поверхностью Луны. Однако, мы не привели значение радиуса области лунного тяготения.
В данной статье мы попытаемся оценить это значение на основе анализа движения космических аппаратов в окололунном пространстве. Необходимую для этого информацию предоставляют, во-первых, пролётные траектории, и, во-вторых, параметры орбит свободного движения искусственных спутников Луны – это движение возможно лишь в пределах области, где лунное тяготение доминирует над земным. Согласно закону всемирного тяготения, такой областью считается т.н. сфера действия Луны, радиус которой составляет 66000 км [5]. Но, как мы увидим, практика окололунных полётов указывает на то, что фактический радиус области лунного тяготения имеет значительно меньшую величину.
Анализ пролёта «Луны-1» рядом с Луной.
Советский космический аппарат «Луна-1», запущенный 2 января 1959 г., впервые в истории космонавтики достиг окрестностей Луны. Планировалось попадание в Луну, которое должна была обеспечить правильность вектора скорости аппарата в конце разгона. Но «из-за ошибки по углу места в 2 о … допущенной при работе наземных радиотехнических средств пеленгации и управления ракетой, двигатель… выключился позже назначенного момента, что и послужило причиной промаха» [6]. Аппарат прошёл на расстоянии около 6000 км от поверхности Луны [7,5,8] и, поскольку при разгоне ему была сообщена гиперболическая скорость, вышел за пределы сферы действия Земли, «превратившись… в первую искусственную планету Солнечной системы» [8].
; ; ; ;
Dj=2(q-a), где ;
Между тем, малость поворота траектории «Луны-1» могла быть обусловлена малостью радиуса области лунного тяготения, т.е., прохождением аппарата лишь по небольшому участку на её периферии. Для такой геометрии, найдём зависимость между радиусом области лунного тяготения и результирующим углом поворота.
Этот угол можно упрощённо рассчитать как отношение поперечного приращения скорости аппарата к его пролётной скорости – которую, ввиду малости изменения расстояния до Луны на отрезке действия тяготения, можно считать постоянной. При этом поперечное приращение скорости находится интегрированием поперечной компоненты ускорения к центру Луны, а радиус границы области тяготения является параметром. Результирующее выражение для Dj имеет вид:
,
Как можно видеть на этом графике, если поворот траектории «Луны-1» оказался, скажем, вдвое меньше предсказываемого ньютоновской теорией, то такому повороту соответствует высота границы области тяготения Луны примерно в 7000 км.
Анализ «пертурбационного манёвра» «Луны-3».
Таким образом, «пертурбационный манёвр» «Луны-3» является, на наш взгляд, доказательством малости области тяготения Луны.
О чём говорит движение искусственных спутников Луны.
При свободном полёте искусственного спутника Луны, апоселений должен быть ниже границы области лунного тяготения. Известны ли случаи, когда апоселений имел высоту существенно большую, чем 10000 км?
В 60-е – 70-е годы ХХ века, максимальную высоту апоселения имел «Лунар Орбитер-5»: 6050 км [11]. Впоследствии эта цифра была увеличена: американский зонд Clementine (1994) имел высоту апоселения 8300 км, американский зонд Lunar Prospector (1998) – 8500 км [12], а китайский «Чан Э» (2007) – 8600 км [13]. Что касается зонда Kaguya (2007), то для высоты его первого, самого высокого, апоселения Японское космическое агентство назвало цифру 11741 км [14], и её повторили многие информационные агентства. Но эта цифра может быть несколько завышена, поскольку она явилась результатом прогноза, сделанного сразу же после главного тормозного манёвра [14]. Во всяком случае, все названные цифры значительно меньше, чем радиус сферы действия Луны.
Кроме того, нам известны два проекта, в которых производились попытки захвата аппарата тяготением Луны на удалениях, значительно больших 10000 км. В обоих случаях официально сообщалось, что захват произошёл – но оказывалось, что новоиспечённый спутник Луны не в состоянии выполнять запланированную научную программу.
Первый из этих двух проектов – полёт японского зонда MUSES-A (Hiten), запущенного в 1990 г. «Во время… первого пролёта Луны предстояло выполнить две задачи: использовать гравитационное поле Луны для увеличения скорости КА и для повышения апогея орбиты, а также отделить от основного КА малый субспутник «Хагоромо», которому предстояло стать искусственным спутником Луны… Отделение «Хагоромо» от базового блока произошло в соответствии с программой полёта в тот момент, когда «Хитен» пролетал на высоте 20 тыс. км от поверхности Луны. Однако собственный передатчик «Хагоромо» вышел из строя, и в центре управления на Земле не удалось получить никаких данных с аппарата и подтвердить его выход на окололунную орбиту. Позже, используя большой оптический телескоп, японским астрономам удалось увидеть, как «Хагоромо» движется по орбите Луны. Это доказало точность расчётов японских инженеров, но как научный аппарат «Хагоромо» был потерян» [15]. Эта официальная версия выглядит неубедительно, поскольку в ней отсутствует информация о том, насколько удался запланированный гравитационный манёвр основного модуля. Более того, в дальнейшем Hiten совершил, как сообщалось, ещё несколько гравитационных манёвров на пролётах вблизи Луны – но подробностей об этих манёврах нам также найти не удалось. Зато известно, что на одиннадцатом пролёте, когда аппарат был переведён на окололунную орбиту, он проходил на расстоянии всего 423 км от поверхности Луны [15].
Второй из упомянутых проектов – полёт зонда SMART-1, который получил широкую известность. Нас пытаются убедить в том, что этот зонд захватился тяготением Луны на периферии её сферы действия, т.е. на удалении почти в 60000 км. Исследуем этот случай.
Зонд SMART-1: о чём молчало Европейское космическое агентство?
Европейский зонд SMART-1 был запущен 27 сентября 2003 г. Основной целью проекта была проверка возможности достижения Луны с помощью двигателя малой тяги – с последующим выходом на орбиту спутника Луны. После вывода зонда ракетой-носителем на околоземную орбиту, эта орбита в течение года с небольшим «раскачивалась», благодаря тяге плазменного двигателя, таким образом, что апогей поднимался всё выше. Теоретически, зонд следовало ввести хотя бы в ближайшую к Земле область сферы действия Луны – с селеноцентрической скоростью, меньшей чем местная круговая – и зонд захватился бы тяготением Луны.
До сих пор на сайте ESA доступны официальные данные [17], описывающие «захват» зонда тяготением Луны. Этих данных достаточно для реконструкции, во-первых, полуэллипса подлёта, по которому зонд двигался в поле тяготения Земли перед тем как, вблизи апогея, войти в сферу действия Луны, и, во-вторых, первого полуэллипса снижения в сфере действия Луны. Можно убедиться в том, что эти два полуэллипса не «сшиваются» друг с другом.
Действительно, нас уверяют [17], что «захват» произошёл сразу после прохождения зондом, 11 ноября 2004, в 10:30 по шкале UTC, точки либрации L1 у пары Земля-Луна. В точках либрации, как утверждает теория, малое тело, ньютоновски притягиваясь к Земле и к Луне и не испытывая других воздействий, обращается вокруг центра масс пары Земля-Луна с той же угловой скоростью, что и сама эта пара – т.е., взаимная конфигурация «Земля-Луна-малое тело» сохраняется. Точка L1 находится на отрезке между Землёй и Луной и отстоит от центра Луны на »58000 км [5]. Момент прохождения зондом точки L1 можно считать моментом «сшивки» геоцентрического полуэллипса подлёта и селеноцентрического полуэллипса снижения, для которого точка L1 была апоселением.
Требуемую для нашего расчёта геоцентрическую скорость подлёта найдём исходя из того, что полусутками раньше прохождения точки L1, 10 ноября, в 22:49, зонд прошёл через апогей – считая, что за эти полусутки скорость существенно не изменилась. Геоцентрическое расстояние до Луны на этих полусутках составляло около 373332 км [18] – с учётом вышеизложенного, геоцентрическое расстояние до апогея можно считать на 58000 км меньшим. Перигей же зонд прошёл 2 ноября, в 07:27. По трём параметрам – моментам прохождения перигея и апогея, а также удалению в апогее – движение по полуэллипсу подлёта реконструируется с использованием формул для эллиптических орбит (см., например, [9]):
; ; ; ,
Но вернёмся к зонду SMART-1 – что же с ним произошло в действительности? Напрашивается версия о том, что, при малости радиуса области тяготения Луны, зонд просто не вошёл в эту область – и, как ни в чём не бывало, продолжил свой полёт по эллиптической орбите вокруг Земли. Самое разумное, что могли сделать руководители полёта в такой ситуации – это проверить, не «захватится» ли зонд на следующем пролёте через сферу действия Луны. Учитывая, что период обращения зонда составлял 17.28 суток, а период обращения Луны, т.е. сидерический месяц, есть 27.32 суток, повторения благоприятной конфигурации следовало дожидаться несколько месяцев – и даже немного подрабатывать двигателем, для обеспечения оптимального «захода на захват». Вполне возможно, что таких повторных попыток было произведено ещё четыре. Действительно, официальное заявление о том, что зонд выполнил свою миссию, появилось 25 августа 2006 г. [16] – т.е. спустя 652 дня после 11 ноября 2004 г. Давайте сопоставим эту цифру с интервалами времени, на которые отстоят от 11 ноября 2004 г. такие конфигурации сближений зонда и Луны, для которых имелись реальные возможности обеспечить очередные «заходы на захват».