какое понятие является ключевым в модели старения гомперца
Закон Гомпертца
Закон смертности Гомпертца-Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) — статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца-Мейхгама, смертность является суммой независимого от возраста компонента (члена Мейкхама) и компонента, зависимого от возраста (функция Гомпертца), который экспоненциально возрастает с возрастом и описывает старение организма. В защищённых средах, где внешние причины смерти отсутствуют (в лабораторных условиях, в зоопарках или для людей в развитых странах) независимый от возраста компонент часто становится малым, и формула упрощается до функции Гомпертца. Распределение было получено и опубликовано актуарием и математиком Бенджамином Гомпертцем в 1832 году.
Согласно закона Гомпертца-Мейкхама, вероятность смерти за фиксованный короткий промежуток времени после достижения возраста x составляет:
где x — возраст, а p — относительная вероятность смерти за определённый промежуток времени, a и b — коэффициенты. Таким образом, размер популяции снижается с возрастом по удвоенной экспонентое:
Закон смертности Гомпертца-Мейкхама наилучшим образом описывает динамику смертности человека в диапазоне возраста 30-80 лет. В области большего возраста смертность не возрастает так быстро, как предусматривается этим законом смертности.
Исторически смертность человека до 1950-х годов была в большей мере вызвана независимым от времени компонентом закона смертности (членом или параметром Мейкхама), тогда как зависимый от возраста компонент (функция Гомпертца) почти не изменялась. После 1950-х годов картина изменилась, что привело к снижению смертности в позднем возрасте и так называемой «де-ректангуляризации» (сглаживанию) кривой выживания.
В терминах теории надёжности закон смертности Гомпертца-Мейкхама представляет собой закон неудач, где норма риска — комбинация независимых от возраста неудач и неудач, связанных со старением, с экспоненциальным увеличением в норме этих неудач.
Закон Гомпертца является частным случаем распределения Фишера-Типпетта для негативного возраста.
Литература
Полезное
Смотреть что такое «Закон Гомпертца» в других словарях:
Закон распределения Гомпертца — Закон смертности Гомпертца Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца Мейхгама, смертность… … Википедия
Закон смертности Гомпертца-Мейкгама — Закон смертности Гомпертца Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца Мейхгама, смертность… … Википедия
Закон смертности Гомпертца-Мейкхама — (иногда просто Закон Гомпертца, Распределение Гомпертца) статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца Мейхгама, смертность является суммой независимого от… … Википедия
Закон смертности Гомпертца-Макегама — Закон смертности Гомпертца Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца Мейхгама, смертность… … Википедия
Распределение Гомпертца — Закон смертности Гомпертца Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закону Гомпертца … … Википедия
Популяционная динамика старения — Популяционная динамика старения направление исследования старения с помощью методов популяционной динамики, то есть исследования возрастного состава популяций стареющих организмов и изменений этой зависимости в зависимости от типа организма … Википедия
Старение (биология) — У этого термина существуют и другие значения, см. Старение. Старая женщина. Анн Поудер 8 апреля 1917 года в свой 110 й день рождения. Сморщенная и сухая кожа типичный признак старения человека … Википедия
Старение человека — У этого термина существуют и другие значения, см. Старение. Старение человека как и старение других организмов, это биологический процесс постепенной деградации частей и систем тела человека и последствия этого процесса. Тогда как… … Википедия
Закон смертности Гомпертца-Мейкхама
Закон смертности Гомпертца-Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) — статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца-Мейхгама, смертность является суммой независимого от возраста компонента (члена Мейкхама) и компонента, зависимого от возраста (функция Гомпертца), который экспоненциально возрастает с возрастом и описывает старение организма. В защищённых средах, где внешние причины смерти отсутствуют (в лабораторных условиях, в зоопарках или для людей в развитых странах) независимый от возраста компонент часто становится малым, и формула упрощается до функции Гомпертца. Распределение было получено и опубликовано актуарием и математиком Бенджамином Гомпертцем в 1832 году.
Согласно закона Гомпертца-Мейкхама, вероятность смерти за фиксованный короткий промежуток времени после достижения возраста x составляет:
где x — возраст, а p — относительная вероятность смерти за определённый промежуток времени, a и b — коэффициенты. Таким образом, размер популяции снижается с возрастом по удвоенной экспонентое:
Закон смертности Гомпертца-Мейкхама наилучшим образом описывает динамику смертности человека в диапазоне возраста 30-80 лет. В области большего возраста смертность не возрастает так быстро, как предусматривается этим законом смертности.
Исторически смертность человека до 1950-х годов была в большей мере вызвана независимым от времени компонентом закона смертности (членом или параметром Мейкхама), тогда как зависимый от возраста компонент (функция Гомпертца) почти не изменялась. После 1950-х годов картина изменилась, что привело к снижению смертности в позднем возрасте и так называемой «де-ректангуляризации» (сглаживанию) кривой выживания.
В терминах теории надёжности закон смертности Гомпертца-Мейкхама представляет собой закон неудач, где норма риска — комбинация независимых от возраста неудач и неудач, связанных со старением, с экспоненциальным увеличением в норме этих неудач.
Закон Гомпертца является частным случаем распределения Фишера-Типпетта для негативного возраста.
Литература
Полезное
Смотреть что такое «Закон смертности Гомпертца-Мейкхама» в других словарях:
Закон смертности Гомпертца-Мейкгама — Закон смертности Гомпертца Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца Мейхгама, смертность… … Википедия
Закон смертности Гомпертца-Макегама — Закон смертности Гомпертца Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца Мейхгама, смертность… … Википедия
Закон распределения Гомпертца — Закон смертности Гомпертца Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца Мейхгама, смертность… … Википедия
Закон Гомпертца — Закон смертности Гомпертца Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца Мейхгама, смертность… … Википедия
Распределение Гомпертца — Закон смертности Гомпертца Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закону Гомпертца … … Википедия
Популяционная динамика старения — Популяционная динамика старения направление исследования старения с помощью методов популяционной динамики, то есть исследования возрастного состава популяций стареющих организмов и изменений этой зависимости в зависимости от типа организма … Википедия
Старение (биология) — У этого термина существуют и другие значения, см. Старение. Старая женщина. Анн Поудер 8 апреля 1917 года в свой 110 й день рождения. Сморщенная и сухая кожа типичный признак старения человека … Википедия
Старение человека — У этого термина существуют и другие значения, см. Старение. Старение человека как и старение других организмов, это биологический процесс постепенной деградации частей и систем тела человека и последствия этого процесса. Тогда как… … Википедия
Сущностная модель старения гомпертца
Автор работы: Пользователь скрыл имя, 01 Марта 2011 в 08:58, курсовая работа
Краткое описание
Теоретическая биология старения и геронтология переживают кризис, связанный с тем, что старые принципы создания концетуальных моделей старения, сводившиеся по существу к абсолютизации отдельных наблюдаемых явлений и частных механизмов старения, потерпели крах. С другой стороны, ряд чисто математических подходов к моделированию старения не встречают интереса и признания среди биологов ввиду явно биологически не обоснованных и фактически не верных изначальных предпосылок.
Закон смертности Гомпертца.doc
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТУ)
Кафедра: Биомедицинская Электроника
по дисциплине: Динамические системы в биологии
СУЩНОСТНАЯ МОДЕЛЬ СТАРЕНИЯ ГОМПЕРТЦА
Где выводы, заключение?
Работу выполнили студенты группы КМ-1-05
Петрова Ю.А.___________________( подпись)
Бунич А.Л._____________________( подпись)
Дата____________ Оценка ________________
Введение
Теоретическая биология старения и геронтология переживают кризис, связанный с тем, что старые принципы создания концетуальных моделей старения, сводившиеся по существу к абсолютизации отдельных наблюдаемых явлений и частных механизмов старения, потерпели крах. С другой стороны, ряд чисто математических подходов к моделированию старения не встречают интереса и признания среди биологов ввиду явно биологически не обоснованных и фактически не верных изначальных предпосылок. В то же время, существует настоятельная необходимость в четком общем взгляде на явление старения в целом и в моделях, позволяющих количественно и содержательно интерпретировать старение организмов, при этом можно видеть, что многие элементы таких моделей уже существует в различных областях биологии. В настоящее время важнейшим представляется достаточно подробная разработка сущностных моделей старения, отражающих само существо этого общего для всего живого явления и являющихся биологически обоснованными и биологически содержательными. Рассматриваются требования к сущностным моделям старения и ряд наиболее отвечающих этим требованиям теорий старения: теория Гомпертца, теории потери информации, регуляторная теория и др., Уточняются понятие биологического возраста и максимальной длительности жизни, развивается общебиологический взгляд на природу человека и сущность старения как общебиологического явления. [1,5]
Являясь специалистом по страхованию жизни, Гомперц теоретически вывел практически необходимую для его профессии формулу интенсивности смертности, повышение которой во времени и служит наиболее общим определением старения как такового до настоящего времени.
Такое неспецифическое повышение уязвимости организма ко всем воздействиям с возрастом и носит название старения как такового. Сам подход к написанию формулы в настоящее время теоретически понятен: это элементарное дифференциальное уравнение, описывающее, например, радиоактивный распад в физике и иные простые вероятностные процессы; сущность процесса в том, что в каждый момент времени изменение состояния не зависит от предыстории, а только от настоящего состояния системы.
Таким образом, содержательная интерпретация понятия «жизнеспособности» с самого начала сводилась и сводится в настоящее время не столько к вещественному наполнению («энтелехия» древних), сколько к энергетическому и информационному содержанию. [1]
1.1 Закон смертности Гомпертца-Мейкхама
Закон смертности Гомпертца-Мейкхама (иногда просто Закон Гомпертца, Распределение Гомпертца) — статистическое распределение, которое описывает смертность человека и большинства многоплодных животных. Согласно закона Гомпертца-Мейхгама, смертность является суммой независимого от возраста компонента (члена Мейкхама) и компонента, зависимого от возраста (функция Гомпертца), который экспоненциально возрастает с возрастом и описывает старение организма. В защищённых средах, где внешние причины смерти отсутствуют (в лабораторных условиях, в зоопарках или для людей в развитых странах) независимый от возраста компонент часто становится малым, и формула упрощается до функции Гомпертца. Распределение было получено и опубликовано актуарием и математиком Бенджамином Гомпертцем в 1832 году.
Согласно закона Гомпертца-Мейкхама, вероятность смерти за фиксованный короткий промежуток времени после достижения возраста x составляет:
где x — возраст, а p — относительная вероятность смерти за определённый промежуток времени, a и b — коэффициенты. Таким образом, размер популяции снижается с возрастом по удвоенной экспонентное:
Закон смертности Гомпертца-Мейкхема наилучшим образом описывает динамику смертности человека в диапазоне возраста 30-80 лет. В области большего возраста смертность не возрастает так быстро, как предусматривается этим законом смертности.
Исторически смертность человека до 1950-х годов была в большей мере вызвана независимым от времени компонентом закона смертности (членом или параметром Мейкхема), тогда как зависимый от возраста компонент (функция Гомпертца) почти не изменялась. После 1950-х годов картина изменилась, что привело к снижению смертности в позднем возрасте и так называемой «деректангуляризации» (сглаживанию) кривой выживания.
В терминах теории надёжности закон смертности Гомпертца-Мейкхема представляет собой закон неудач, где норма риска — комбинация независимых от возраста неудач и неудач, связанных со старением, с экспоненциальным увеличением в норме этих неудач.[4,6]
1.2 Популяционная динамика старения
Целью популяционного подхода является определение закономерностей в зависимости размера популяции от времени, которые используются для определения скорости процесса старения. Эти данные, в свою очередь, могут использоваться для проверки моделей старения, выведенных или основываясь на физиологических и генетических механизмах, или с помощью общих системных механизмов.[3,4]
1.3 Графическое отображение процесса старения, закон Гомпертца
Величина, которая непосредственно измеряется — это вековая зависимость популяции, из-за этого искомая величина является наиболее общей мерой смертности и старения. Тем не менее, более наглядной величиной является смертность или выживание — показатели, которые в большей мере характеризуют сам процесс старения. Часто используются логарифмические кривые, которые лучше отображают некоторые характерные черты приведенных зависимостей.[3]
Закон Гомпертца эмпирический и имеет место не для всех животных и не на всех промежутках времени, но он наиболее простой для сравнения старения разных организмов, и потому его коэффициенты часто используются в качестве показателей темпа (скорости) старения.[6]
1.4 Зависимость параметров кривой Гомпертца от организма
Рис.4 График зависимости смертности от возраста мужского населения Швеции в XIX—XX веках показывает три фазы увеличения продолжительности жизни:
1860-1920. Уменьшение детской смертности и члена Мейкхема
1920-1946. Уменьшение члена Мейкхема
1946-2000. Уменьшение темпа старения (коэффициента m в законе Гомпертца).
Коэффициент экспоненты функции Гомпертца показывает скорость старения. Различия в долголетии между видами является результатом прежде всего различий в скорости старения, и потому выражаются в различиях в этом коэффициенте.[2]
Сравнение таблиц смертности разных штаммов мышей одного вида показывает, что различия между штаммами в первую очередь происходят от различий в члене Мейкхема (независимому от возраста члене) функции Гомпертца. Если штаммы отличаются только независимым от возраста членом, менее долголетние штаммы имеют большую смертность, которая выше на постоянную величину на протяжении всей жизни, что проявляется в вертикальному сдвиге функции Гомпертца. При этом часто случается, что гибриды первого поколения (F1) двух естественных штаммов живут дольше, чем любой из родителей. Хотя исследований биохимических процессов таких гибридов не проводилось, таблицы продолжительности жизни указывают, что гибриды отличаются от родительских штаммов только независимым от возраста членом, но не сменой скорости старения. Другие исследования также показали, что в значительной мере вариации в продолжительности жизни между штаммами мышей поясняются различиями в унаследованной склонности к определённым болезням.
1.5 Отклонения от закона Гомпертца: детская смертность
1.6 Отклонения от закона Гомпертца: замедление старения в позднем возрасте
Рис. 5 Отклонения возрастной зависимости популяции плодовых мух (Drosophila melanogaster) от кривой Гомпертца.
В области позднего возраста, наоборот, наблюдается уменьшение смертности по сравнению с законом Гомпертца, точнее выход вероятности смерти за единицу времени на плато. Как и в случае детской смертности, это общий закон, который наблюдается даже в неживой природе. И хотя одним из возможных пояснений этого явления могла бы быть гетерогенность популяции, современные данные чётко указывают на связь выхода смертности на плато с замедлением процесса старения.[5,6]
Сущностные модели старения и продолжительности жизни
Опубликовано в журнале:
Профилактика старения »» Выпуск 1 1998 В.И. Донцов, В.Н. Крутько
Национальный геронтологический центр
Теоретическая биология старения и геронтология переживают кризис, связанный с тем, что старые принципы создания концетуальных моделей старения, сводившиеся по существу к абсолютизации отдельных наблюдаемых явлений и частных механизмов старения, потерпели крах. С другой стороны, ряд чисто математических подходов к моделированию старения не встречают интереса и признания среди биологов ввиду явно биологически не обоснованных и фактически не верных изначальных предпосылок. В то же время, существует настоятельная необходимость в четком общем взгляде на явление старения в целом и в моделях, позволяющих количественно и содержательно интерпретировать старение организмов, при этом можно видеть, что многие элементы таких моделей уже существует в различных областях биологии. В настоящее время важнейшим представляется достаточно подробная разработка сущностных моделей старения, отражающих само существо этого общего для всего живого явления и являющихся биологически обоснованными и биологически содержательными. Рассматриваются требования к сущностным моделям старения и ряд наиболее отвечающих этим требованиям теорий старения: теория Гомперца, теории потери информации, регуляторная теория и др, Уточняются понятие биологического возраста и максимальной длительности жизни, развивается общебиологический взгляд на природу человека и сущность старения как общебиологического явления.
С другой стороны, ряд чисто математических подходов к моделированию старения не встречают интереса и признания среди биологов, так как даже при самом поверхностном изучении видны биологически не обоснованные и фактически не верные изначальные предпосылки. Так, например, модные экологические и эволюционные математические теории старения, основанные на представлении о «целесообразности старения» как механизма ускоренного обновления вида, игнорируют очевидный факт высокой естественной смертности в дикой природе, когда старые животные фактически отсутствуют в популяции и практически все животные умирают молодыми.
В то же время, существует настоятельная необходимость в четком общем взгляде на явление старения в целом и в моделях, позволяющих количественно и содержательно интерпретировать старение организмов, при этом можно видеть, что многие элементы таких моделей уже существует в различных областях биологии.
В настоящее время важнейшим представляется, таким образом, достаточно подробная разработка сущностных моделей старения, отражающих само существо этого общего для всего живого явления и являющихся биологически обоснованными и биологически содержательными.
Сущностные модели должны отвечать следующим требованиям:
2. ТЕОРЕТИЧЕСКИЕ МОДЕЛИ СТАРЕНИЯ
ОБЩАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ СТАРЕНИЯ Б.ГОМПЕРЦА
Являясь специалистом по страхованию жизни, Гомперц теоретически вывел практически необходимую для его профессии формулу интенсивности смертности, повышение которой во времени и служит наиболее общим определением старения как такового до настоящего времени.
Такое неспецифическое повышение уязвимости организма ко всем воздействиям с возрастом и носит название старения как такового. Сам подход к написанию формулы в настоящее время теоретически понятен: это элементарное дифференциальное уравнение, описывающее, например, радиоактивный распад в физике и иные простые вероятностные процессы; сущность процесса в том, что в каждый момент времени изменение состояния не зависит от предыстории, а только от настоящего состояния системы.
Таким образом, содержательная интерпретация понятия «жизнеспособности» с самого начала сводилась и сводится в настоящее время не столько к вещественному наполнению («энтелехия» древних), сколько к энергетическому и информационному содержанию.
Эта формула была впоследствии модифицирована затем У.Мейкемом, добавившим в формулу Гомперца постоянный коэффициент, представляющий независимый от возраста компонент смертности, имеющий, как теперь становится ясно, эколого-социальную природу и выраженно меняющийся в истории человечества: М(t) = A + Ro exp(a t)
До настоящего времени формула Гомперца-Мейкема остается наилучшей для описания смертности, связанной со старением, для самых раз-личных видов, включая человека.
Принято представлять график экспоненты в полулогарифмических координатах, где она имеет вид прямой. Однако, аддитивная поправка Мейкема в правой части уравнения обусловливает отклонение от прямой линии зависимости Ln(m) от t. Поскольку А является константой, получить в правой части уравнения чистую экспоненту можно, продифференцировав уравнение.
Для целей количественной геронтологии необходимо иметь возможность вычисления параметров уравнения Гомперца-Мейкема, что можно сделать методами нелинейной регрессии. Для вычисления «вручную» Л.А. Гаврилов и Н.С. Гаврилова (1991) предлагают нижеследующий алгоритм, дающий вполне удовлетворительную точность (1). Пусть мы имеем значения чисел доживших «l» для четырех равноотстоящих друг от друга моментов времени: t, t+n, t+2n.
Вначале вычисляют вспомогательные величины:
y1 = ln[ l(t)/l(t+n)];
y2 = ln[l(t+n)/(l(t+2n)];
y3 = ln[l(t+2n)/(l(t+3n)];
z = y1+y3-2y2;
w= (y3-y2)/(y2-y1).
Тогда параметры формулы Гомперца-Мейкема могут быть найдены из следующих соотношений:
A = (y1 y3-Y22)/(z n),
Ro = [(y2-y1)2ln(w)]/[z n(w-1)wt/n],
a = ln(w)/n,
Интересны некоторые очевидные и экспериментально известные выводы, иногда, однако, парадоксально звучащие. Так, например, очевидно, что наибольшее абсолютное снижение жизнеспособности можно наблюдать в раннем возрасте, что мы и видим по кривым изменения в онтогенезе абсолютного значения многих физиологических функций. В это время, соответственно, эффективны мероприятия по профилактике старения и удобно проводить экспериментальную проверку геропрофилактических средств. В то же время, в старости даже небольшие абсолютные изменения жизнеспособности ведут к выраженным изменениям смертности, поэтому в старших возрастах удобно изучать влияния адаптогенов и биостимуляторов, хотя малый жизненный ресурс может и не приводить к повышению длитель-ность жизни при их использовании.
Полученная кривая изменения жизнеcпособности, однако, все же отличается от реальной в ее начальной и конечной части и отражает изменение уже сформировавшегося организма, прекратившего процессы роста и развития.
РЕГУЛЯТОРНАЯ МОДЕЛЬ СТАРЕНИЯ
Рассмотрим следующую простую схему. Пусть уровень самообновления (например, уровень клеточного самообновления путем деления клеток в популяции, ограниченной и стабилизированной кейлонными и иными обратными связями) будет пропорционален некоторому веществу «С». Вследствие быстрого установления нового равновесия для делящейся клеточной популяции при повышении содержания регуляторного вещества в окружающей клетки среде и необходимости сохранить длительно рост всего организма (повышение массы с 4-6 кг при рождении до 50-80 кг за 20 лет), в течение всего периода роста организма нужно сохранять повышающийся градиент вещества «С», например, в крови. Это можно обеспечить, например, за счет растормаживания вырабатывающих это вещество регуляторных «s» клеток. Реально такие процессы широко известны, например, для нейрогормональной регуляции и осуществляются за счет спонтанной высокой гибели клеток-ингибиторов «i» в регуляторных центрах вегетативного мозга (гипоталамуса).
Таким образом, регуляторная теория старения оказывается достаточно простой и эффективной при качественном и количественном описании процессов старения реальных систем. Более того, она едва ли не единственная может объяснить причины высоких видовых различий по срокам жизни для близких видов, построенных из сходных типов клеток и тканей (например, для человека и мыши) и возможности в ряде случаев резко, в разы, а для нетеплокровных и на порядки, изменять длительность жизни организмов в эксперименте или при изменении естественных условий. Однако, для каждого конкретного организма применение регуляторных теорий требует ответа как минимум на следующие вопросы:
Совершенно ясно, например, что для мышей, у которых имеет место различие в разы длительности жизни весенней и осенней генераций потомства в естественных условиях регуляторные механизмы принципиально более важны, чем для че-ловека, у которых фактически нет сезонных ритмов старения. Ясно также и то, что изменения тканей 2-х летней мыши, аналогичные изменениям однотипных тканей 60-80-летнего человека в принципе также в большой мере зависят от регуляторных влияний, тогда как живущий в течение 100 лет человек гораздо менее подвержен, видимо, действию собственно регуляторных механизмов.
НОВАЯ ИММУННАЯ ТЕОРИЯ СТАРЕНИЯ
Оригинальными российскими исследованиями, в том числе нами показано, что в современном многоклеточном организме существует специальная система регуляции клеточного роста любых соматических пролиферирующих клеток, представленная, в частности, субпопуляциями Т-лимфоцитов (система КРП).
Более подробно этот вопрос рассмотрен в отдельных публикациях (Донцов, 1990, Донцов, Крутько, Подколзин, 1997, Подколзин, Донцов, 1997) и в отдельном разделе книги.
Показано рядом авторов, что эта система непосредственно связана и с регуляцией роста целостного организма, с процессами регенерации, гиперплазии, опухолевого роста и со снижением уровня клеточного самообновления в старости, когда снижается скорость клеточного деления самых различных типов соматических клеток.
Нами была выдвинута новая иммунная (лимфоидная) теория старения, связывающая возрастное снижение клеточного роста и самообновления непосредственно с регуляторными изменениями в Т-лимфоидной системе иммунитета, в той ее части, которая регулирует клеточный рост соматических клеток (Донцов, 1990-2000).
Может показаться, что хорошее соответствие полученных результатов для «регуляторной теории» старения позволяет быстро и просто обратить старение внешним введением регуляторного фактора «F. Однако, в реальности в организме протекают процессы старения и не связанные с самообновлением, представленные выше и отражающие, например, необратимую гибель нервных клеток, альвеол, нефронов, отдельных уникальных генов в клетке, даже зубов и пр. Именно этим механизмам принадлежит, видимо, центральная роль в старении рыб и иных постоянно растущих в течение всей жизни организмов.
СТАРЕНИЕ КАК СПОНТАННАЯ ПОТЕРЯ И ИЗМЕНЕНИЕ ИНФОРМАЦИИ
Существуют еще минимум два механизма старения, вносящие свой вклад в старение целостного организма.
Кроме того, сохранение системы во времени означает тождество суммарных потоков, поступающих из внешней среды, выводящейся из системы и сохраняющегося динамически потока внутри системы. Не трудно видеть, что центральным при таком рассмотрении оказывается процесс сохранения информации в системе, т.к. вещественная и энергетическая организация являются только «материальными носителями» этой информации и, фактически, следуют качественно и количественно за изменением информации, которая выступает как регулирующий, управляющий и (само)-организующий фактор.
В общем виде информация в системе может изменяться благодаря следующим процессам:
Численная модель рассеивания начальной ин-формации в стабилизировавшейся системе представлена на рисунке 5.
При анализе модели учтено, что мутировавшие клетки обычно менее жизнеспособны и, кроме того, подвергаются иммунному надзору и гибнут поэтому быстрее, а также по тем же причинам с меньшей скоростью самообновляются. Соответственно коэффициенты для модели подобраны в случае графика: k1=0,3, k5=0,2, k4=0,1, k2=0,03, k3=0,05, k6=0,07.
На модели можно видеть, что со временем соотношение мутантных и неизмененных единиц информации стабилизируется, но в течение некоторого периода будет иметь место нарастание числа мутаци, что будет вести к нарастанию смертности. Вид кривой смертности, однако, не экспоненциальный, а линейный, а лоарифма смертности – выпуклый, что значительно отличается от реальной кратины. Это не удивительно, так как время установления равновесия I и Im невелико – фактически, например, время клеточного деления для клеток слизистой и кожи – дни и часы, поэтому на фоне многих лет жизни напрямую этот механизм вряд ли вносит существенный вклад в процесс старения. Накопление мутаций скорее отражает другие процессы – резкое (регуляторное) снижение скорости клеточного самообновления и снижение эффективности иммунного надзора с возрастом. Мутации важны и в случае повышения с возрастом риска возникновения опухолей, что вносит значительный вклад в причины смертности для млекопитающих вообще и человека в особенности.
Это известно на примере повышения уровня аутоантител против собственных структур организма с возрастом (результат реакции иммунной системы на «изменившееся свое») и снижении длительности жизни при слишком высоких уровнях таких антител. Фактически, организм со временем выходит на разумный балланс между аутоиммунным саморазрушением и неконтролируемым, в том числе опухолевым, ростом и разнообразием, причем оба процесса в конечном счете разрушительны.
ОБЩИЕ ЧЕРТЫ ИЗМЕНЕНИЯ МОРФОЛОГИИ И ФУНКЦИИ СТРУКТУР И ПРОЦЕССОВ В ХОДЕ СТАРЕНИЯ
Общее определение процесса старения позволяет, в частности, описать общие черты возрастной эволюции морфологии и функции любых структур и процессов в организмах любых видов.
БИОХИМИЧЕСКИЕ И ТЕРМОДИНАМИЧЕСКИЕ МОДЕЛИ СТАРЕНИЯ
Соответственно, можно теперь представить уровень жизнеспособности как степень отклонения от состояния равновесия.
Очевидным при таком рассмотрении является и то, что для поддержания жизнеспособности в любой части любой живой системы необходима постоянная затрата энергии, так как для живых систем характерно снижение энтропии, а согласно второму закону термодинамики это возможно только при постоянном поступлении энергии извне.
Таким образом, по степени потребления энергии организмом можно судить о степени его жизнеспособности.
Для целостного организма эффективными, видимо, являются подходы оценки энтропии с точки зрения информации и ее гармоничности для целого единого организма. Исходят из представлений об оптимальности взаимосвязей различных регуляторных систем: в каждый момент времени возможно оптимальное гармоничное состояние, обеспечивающее максимальную жизнеспособность, максимальную адаптацию и т.п. Исходя из кросс-корреляций между различными системами (сердечно-сосудистой, дыхательной, эндокринной и пр.) можно выразить в безразмерных числах такие коэффициенты взаимодействия и придать им значимость информационного содержания, а также выразить это в понятиях энтропии.
Сколь-либо развернутые исследования в этом направлении, однако, отсутствуют, что затрудняет практическую реализацию и интерпретацию таких подходов. Несомненно, однако, что именно энтропия является важнейшим показателем старения и способы, позволяющие вычислять ее для целостного организма должны открыть принципиально новые возможности для анализа в биологии старения и для выяснения первичных, сущностных, механизмов и первопричины старения.
Для практических целей важно рассмотреть возможности влияния на информационно-энтропийные процессы в целом, что позволило бы влиять и на сущностный механизм старения. Для разных уровней организации, очевидно, существуют разные возможности. Так, для целостного организма это уже обсуждалось в связи с регуляторными моделями старения. Возможности здесь сводяться к:
а) влиянию на процессы роста, развития и самообновления клеток (эндокринные влияния, нервные влияния и гуморальные влияния),
б) гармонизацию имеющихся процессов (акупунктура, физическая и психологическая тренировка и т.п.),
в) социально-общественные мероприятия как «здоровый образ жизни».
Наконец, в последнее время популярными стали прямые энерго-активационные методы, которые могут прямо влиять на уровень биохимических реакций, в частности, на энергии активации таких реакций, что все более широко применяется для общей биостимуляции и оздоровления:
а) лазерное облучение в т.ч. внутривенное,
б) озонотерапия,
в) электромагнитное облучение в т.ч. КВЧ-терапия и многие методы физиотерапии.
Вообще говоря, исходя из иерархичности ценностных приоритетов для человека старение все влияния на него, тем более затрагивающие саму биологическую природу человека, невозможно рассматривать без учета чисто человеческих факторов.
Главным определяющим моментом рассмотрения должен быть общебиологический подход к проблеме, рассматривающий жизнь со всеми ее атрибутами в целом.
Оказывается, такой подход известен был всегда и анализ на таком уровне проблемы дает вполне однозначные результаты, сведенные для удобства в приведенную схему.
Реальная задача можеть звучать только так: «поставить под осознанный контроль всю программу развития человека как индивида и вида и овладеть осознанным процессом формообразования в широких пределах организма в целом».
Не следует также забывать, что человек существует и как индивид, развивающийся в онтогенезе, а как единица вида – задачи преодоления старения в том и другом случае различны.
ВИДОВОЙ ИЛИ «МАКСИМАЛЬНЫЙ ПРЕДЕЛ» ЖИЗНИ
Представление о максимальной (видовой) продолжительности жизни (МПЖ или ВПЖ), с которым связаны определения предела жизни, является относительно более важным моментом для геронтологии, так как средняя продолжительность жизни есть предмет изучения скорее демографии и медицины.
Исследования с помощью строгих математических выкладок позволяют в настоящее время говорить как о доказанных фактах о ряде важнейших закономерностей, характерных для биологии старения и продолжительности жизни.
Было показано, как и следовало ожидать, что компонента «А» отражает историко-социо-культурные влияния и для развитых стран в настоящее время практически приближается к нулю, что и проявляется в типичных близким к прямоугольным кривых дожития населения этих стран. Таким образом, повышение уровня и комфортности жизни, высокий уровень медицины, оптимальное питание и прочие сходные факторы развитой культурной среды практически исчерпали к настоящему времени свое влияние на ПЖ человека. Поэтому, перспективными являются исследования возможностей влиянии на его биологическую основу, определяющую возрастную компоненту смертности, изменяющуюся по экспоненте.
Исследования возрастной компоненты смертности оказали важное методологическое влияние на геронтологию, так как подтвердили общий тезис об условности и неполноте односторонних взглядов на причины старения. Так, подверглись пересмотру представления о только «внешней» или только «внутренней» природе старения, о генетических, эволюционных и экологических влияниях, влиянии традиций питания на ПЖ и др.
Было, например, показано, что практически во всех случаях показатели смертности для мужчин выраженно выше, чем для женщин (хотя в общем случае для других видов может наблюдаться как подобная, так и обратная картина).
С другой стороны, в Дании зарегистрирована необычно высокая смертность среди женщин, что связано с традиционным избытком жирной пищи и высоким уровнем опухолей молочных желез.
Оба примера указывают на связь экологии, социо-культурных традиций (питания) и собственно «биологической» или «внутренней» причины смертности человека, которые, таким образом, не могут рассматриваться как противостоящие полностью друг другу.
Исследование компенсационного эффекта смертности и его осмысление выявляет ряд фундаментальных закономерностей. Так, наличие некоторой избранной точки в поздних возрастах говорит о наличии некоторых фундаментальных для вида механизмов, определяющих устойчивость организма (или механизмов старения), причем этот фактор должен быть связан с фундаментальными параметрами организма. Таким параметром некоторые считают, например, температуру, поддерживающуюся с высокой точностью в течение всей жизни. Соответственно, определяющими скорость старения механизмами считают, например, зависимые от температуры мутации (прежде всего точечные повреждения, вызываемые хаотическим температурным движением молекул и образовывающимися свободными радикалами).
С другой стороны, разрабатываются тесты на диагностику такого неспецифического состояния уязвимости ко многим факторам внешней среды, включая травматизм, примером чего служит определение уровня сахара в крови, повышение которого как раз и указывает на выход организма в опасное состояние.
Таким образом, только весьма условно можно говорить о разделении факторов, влияющих на старение, на «внешние» и «внутренние», и признавать «биологическую основу старения» как чисто внутренний феномен организма.
В таком случае, правильнее говорить о ВПЖ как о законе распределения (только в ряде случаев вырождающемся в число) и определять параметры этого закона, а не как о некотором мифическом числе, которое не удается определить сколь-либо вразумительно ни с каких позиций.
Подход оценки МПЖ как характеристики особой точки пересечения нескольких графиков интенсивности смертности для одного вида на настоящий момент, видимо, является наиболее научным определением МПЖ, но весьма трудоемким и, видимо, мало пригодным для экспериментальных целей у животных.
ЕДИНАЯ СУЩНОСТНАЯ СИСТЕМНАЯ МОДЕЛЬ СТАРЕНИЯ
Системный подход к процессу старения включает формулирование глобального закона старения как общего феномена, что является определением старения и формулирует причину старения, которая принципиально должна быть определена на уровне достаточной абстрактной всеобщности: старение – глобальное снижение жизнеспособности (устойчивости ко всем формам повреждений), что ведет к повышению общей смертности целостного организма со временем в течение всей его жизни.
Общая причина старения в целом достаточно понятна на современном уровне обобщения – это дискретность существования организмов, ведущая к отграниченности их от внешней среды и приводящая к принципиальной недостаточности вследствие этого любых внутренних (следовательно, ограниченных пределами организма) механизмов самосохранения при принципиально неограниченном влиянии по качеству и силе со стороны внешних воздействий всего Мира. Это глобальное противоречие «целого и части» ведет к эволюции и развитию жизни, но включает изменение всех форм, а недостаточность изменчивости на индивидуальном уровне ведет к старению и смерти. Общность морфофункциональной организации особей конкретного вида придает им и общность сроков жизни, темпов старения и главных для каждого вида механизмов старения.
Системный анализ позволяет рассматривать старение с нескольких глобальных точек зрения, тем самым выявив 4 глобальных типа старения, как отражение принципиально однонаправленно действующих механизмов старения, что подробнее изложено ниже в отдельной главе:
Выделение 4-х типов старения позволяет ориентироваться в степени выраженности различных сторон процесса старения у каждого индивида и выбирать те или иные воздействия для геропрофилактики, биоактивации и продления жизни.
Системный подход позволяет количественно моделировать различные теории старения, причем нами выдвигается обязательное требование – сущностной наполненности модели, что позволяет сразу говорить о конкретных механизмах возможной реализации на биологическом уровне. Это, в частности, позволило нам подробно разработать новую иммунную модель старения, отражающую взаимоотношение пролиферирующих клеточных популяций различного типа и снижение потенциала клеточного роста с возрастом (что будет подробно рассмотрено в отдельной главе).
Важнейшим требованием системной теории старения является обязательный учет границ действия той или иной «теории» старения, на деле отражающей частные механизмы старения определенной группы клеток, органов, отдельные общие закономерности процесса старения и пр. – принцип иерархичности в рассмотрении механизмов и законов старения как глобального процесса.
Наконец, центральным положением системной теории старения является учет глобального единства целостного организма, целостности всех сторон его деятельности и изменений в течении жизни, а также принципиальное значение того факта, что, практически, феномен старения занимает важное место только в жизни человека и чисто человеческие качества (психические и социо-культурные) имеют едва ли не основное значение в рассмотрении старения вообще. Последнему обстоятельству благоприятствует то, что в природе в целом встречается удивительное разнообразие в сроках жизни и конкретных механизмах старения для каждого отдельного вида, что, однако, только подчеркивает то, что старение выраженно зависит от конкретного «устройства» организма и изучение старения во многом должно ориентироваться в первую очередь на человека. Именно человеческие особенности (культурные, религиозные, технические и пр.) и ограничивают возможные типы вмешательства в процесс старения, и открывают новые пути для него.
В целом, сам интерес к феномену старения для человека означает, что он вышел за пределы биологической природы и требует уже иных условий и форм существования. Фактически, речь идет о формировании новых путей эволюции человека, новых форм его жизнедеятельности и, возможно, нового типа физического тела, новых условий жизни и новых отношений со средой.
Таким образом, разрабатываемая нами системная сущностная теория старения является наиболее адекватным методом рассмотрения старения в настоящее время; она позволяет анализировать старение на всех уровнях: уровне общих закономерностей и понятий, уровне количественного моделирования, уровне сущностного наполнения биологическим материалом. При этом сохраняется общее видение проблемы и целостности организма со всеми его иерархическими уровнями организации. Эта теория принципиально открыта для развития и позволяет не отвергать уже имеющиеся теории старения, а органически вбирать их, рассматривая то место в целостной картине процесса старения, которое они объективно описывают.
Содержательная сторона отдельных достаточно разработанных частей этой общей системной сущностной теории старения и основанных на ней способов профилактики старения и подходов к биологической активации организма описываются в отдельных публикациях.
ЛИТЕРАТУРА