какое отклонение допускается в сторону увеличения
FAQ для новичков. Вылет диска – все что нужно знать.
Вылет диска — все что нужно знать
Вылет диска – на самом деле один из самых важных его геометрических параметров. Причина такой важности в том, что если диск не соответствует по диаметру, количеству болтовых отверстий или расстоянию между ними – Вы скорее всего просто не сможете установить такой диск на ступицу, а вот диск с несоответствующим штатному вылетом (если отклонение небольшое) в большинстве случаев без проблем становится на ступицу и вроде бы нормально выполняет свои функции. Насколько можно доверять вот этому «вроде бы»?
На различных автофорумах автомобилисты часто спорят на тему «насколько и в какую сторону вылет диска может отличаться от штатного», при этом часто высказываются диаметрально противоположные мнения.
Продавец-консультант в специализированном шинном магазине, скорее всего Вам скажет, что небольшое отклонение вылета от требований автопроизводителя вполне допустимо, и в том случае, если колесо в сборе нормально садится на ступицу и при вращении не цепляет за детали подвески и кузова – такой диск однозначно можно ставить на автомобиль. Продавец же колесных проставок вообще скажет Вам, что уменьшение вылета диска — это никакая не проблема, независимо от конкретных параметров. И это понятно — их цель — продать Вам диски, проставки под колесные диски и прочие товары. Ваша цель — купить то, что точно Вам подходит.
А на самом деле? Давайте разберемся во всем по порядку и не спеша.
Что такое вылет диска?
вылет диска — разные вариантыВылет диска – это расстояние между вертикальной плоскостью симметрии колеса и плоскостью приложения диска к ступице в миллиметрах. Формула вычисления вылета диска крайне проста:
ET=a-b/2, где
a – расстояние между внутренней плоскостью диска, и плоскостью приложения диска к ступице
b – общая ширина диска
Исходя из формулы вычисления, нетрудно заметить, что вылет диска может быть положительным (чаще всего), нулевым и отрицательным. Кроме того, вылет дисков фактически непосредственно влияет на ширину колесной базы, ибо от этого параметра напрямую зависит расстояние между центрами симметрии (по ширине) колес на одной оси.
Кроме того, опять таки из формулы вычисления, можно сделать вывод о том, что на вылет диска не влияют ни ширина диска (и соответственно шины), ни диаметр диска. Для определения расчетных нагрузок на подвеску важно исключительно плечо приложения силы, т.е. расстояния от центра шины (по ширине) до ступицы. Таким образом, независимо от размерности шин и дисков, расчетный вылет, требуемый автопроизводителем для одной модели автомобиля будет всегда один.
В кодировке, которая нанесена на внутреннюю поверхность диска, вылет обозначается, как ЕТхх, где хх – это фактическое значение вылета в миллиметрах. Например: ЕТ45 (положительный), ЕТ0 (нулевой), ЕТ-15 (отрицательный)
Допустимы ли отклонения вылета диска?
Для ленивых и занятых: вылет диска должен точно соответствовать требованиям производителя автомобиля и никакое отклонение в никакую сторону не может считаться допустимым. Изменяя вылет диска (даже не «незначительные» 5 мм) Вы изменяете также существенные условия работы всех узлов подвески, создавая усилия (и векторы их приложения), на которые Ваша подвеска не рассчитана. Самое простое следствие – срок службы элементов подвески сокращается, но в условиях критических нагрузок последствия могут быть гораздо печальнее, вплоть до внезапного разрушения во время движения. Хотите знать почему – читайте дальше.
Почему продавцы заявляют обратное? Ответ прост – просто потому, что вариантов вылета диска существует очень много, и конкретно под «Ваш» вылет им достаточно сложно подобрать подходящие по другим параметрам диски для Вашего авто. Т.е. пренебрежение точностью соответствия вылета существенно расширяет ассортимент дисков, которые Вам смогут предложить, что существенно повышает шансы что-либо Вам продать.
Почему для разных комплектаций автомобилей делают разные запчасти?
Для начала, нужно понимать, что, во время разработки подвески каждого отдельно взятого автомобиля конструкторы просчитывают величайшее множество параметров, в зависимости от которых определяются, в том числе, и требования к отдельным элементам подвески.
Вы никогда не сталкивались, например, с такой ситуацией, когда для двух одинаковых автомобилей (модель, марка), отличающихся только двигателем, производитель делает разные детали подвески – шаровые опоры, наконечники рулевых тяг, рычаги, а также все сайлентблоки, которые присутствуют в местах соединения этих узлов? Как думаете, почему так происходит?
Все очень просто: потому, что разные моторы имеют разный вес, соответственно, при его изменении меняется сила и (возможно) вектор приложения силы, действующая на отдельные узлы подвески. Соответственно, меняется и конструкция, которая должна обеспечивать максимальную надежность узла при сохранении управляемости и комфортности, ну и (что также немаловажно) минимальных затратах на производство.
И нужно отметить, что если раньше большинство автопроизводителей делали достаточно большой запас прочности в основных узлах автомобиля (в т.ч. касается подвески), то в последнее время наблюдается тенденция к более точным конструкторским расчетам и снижению себестоимости автомобиля именно за счет уменьшения вот этого запаса прочности. И тенденция эта, увы, существенно снижает какие-либо возможности для «гаражного» тюнинга, как подвески, так и двигателей.
Какие силы действуют на детали подвески?
вылет диска — подвеска МакферсонаЕсли разложить подвеску современного автомобиля по силам, которые действуют на отдельные ее элементы – получится многотомное издание, которое не под силу для понимания обычному автолюбителю. Поэтому для наглядности рассмотрим упрощенный вариант независимой подвески системы МакФерсона, где ступица крепится к кузову одним поперечным рычагом и стойкой с амортизатором.
Согласно Третьему закону Ньютона (сила действия равна силе противодействия), общая масса автомобиля распределена между четырьмя его колесами, при этом сила, действующая на каждое колесо, направлена от поверхности, на которой стоит (или двигается) автомобиль. Точкой приложения этой силы является при этом центр площади пятна контакта шины с дорожным покрытием. Если принять, что подвеска автомобиля исправна, колеса отбалансированы и углы развала-схождения соответствуют норме, то этот центр площади пятна контакта будет находиться на оси симметрии колеса по его ширине. Туда же должна опускаться и ось стойки амортизатора, на которой находятся крепления рулевых тяг (наконечников).
Таким образом, сила, равная доле массы автомобиля, приходящейся на любое из его колес, направлена от земли и точка приложения этой силы – центр симметрии колеса по ширине. Учитывая конструкцию подвески, указанная сила создает моменты на ступичный подшипник, рычаг (растяжение) и стойку с амортизатором (сжатие).
И конструктор, который разрабатывает узлы подвески автомобиля, тщательно просчитывает все эти моменты, учитывая в разработке, в частности ступицы, рычага, стойки амортизатора, шаровой опоры, наконечников рулевых тяг и т.д. Запас прочности, безусловно закладывается, но, как правило, этот запас имеет тенденцию к уменьшению, поскольку его увеличение ведет к увеличению себестоимости подвески в целом.
Что происходит при изменении расчетного вылета диска?
На рисунке выше хорошо видно, что единственное, на что по факту влияет вылет – это расположение центральной оси диска (колеса) относительно ступицы. При увеличении вылета колесо будет «садиться» глубже на ступицу, сужая колесную базу. Уменьшение вылета, соответственно, расширяет колесную базу и «выносит» колесо наружу.
Главное, что нужно понимать автолюбителю, это то, что в обоих случаях смещение центральной оси диска неизбежно смещает рулевую ось, изменяя при этом предусмотренные конструктором параметры выворота руля (это влияет и на управляемость автомобиля в целом и на износ резины в поворотах), и изменяет сами моменты сил, действующие на подвеску, а также векторы их приложения. Все это в комплексе заставляет подвеску работать в непредусмотренном автопроизводителем режиме, а потому срок ее службы и безопасность вождения (особенно в экстремальных условиях) в таком случае – лотерея с небольшими шансами.
Таким образом, даже если колесо с непредусмотренным вылетом без проблем садится на ступицу – это еще совершенно не означает, что этот диск подходит для безопасного использования. Если вылет понравившегося Вам диска больше штатного (предусмотренного производителем автомобиля), выходом из ситуации может быть использование колесных проставок, но найти подходящие Вам проставки под диски будет не так просто.
В Поездку
Все для локомотивной бригады
3. Техническое содержание и основные требования, предъявляемые к колесным парам в эксплуатации
3.1. Колесные пары для определения их технического состояния и пригодности к эксплуатации подвергаются осмотру с регистрацией в книге формы ТУ-28:
3.2. Осмотр колесных пар под ТПС должны производить :
3.3. При осмотре колесных пар проверять:
Предельный прокат (предельная высота гребня) и наличие опасной формы гребня проверяются шаблоном УТ-1 при технических обслуживаниях ТО-2 (при их выполнении в крытых помещениях), ТО-3, ТО-4, ТО-5, текущих ремонтах ТР-1, ТР-2 и ежемесячных обмерах колесных пар. Допускается при проведении технического обслуживания ТО-2 (для МВПС — ремонтными бригадами) контролировать опасную форму гребня шаблоном ДО-1. После выявления колес с опасной формой гребня с помощью этого шаблона необходимо шаблоном УТ-1 измерить величину этого параметра и по результатам этого измерения принимать решение о допуске их к эксплуатации или о назначении ремонта;
3.4. В соответствии с ПТЭ номинальное расстояние между внутренними гранями колес у ненагруженной колесной пары должно быть 1440 мм. У локомотивов и вагонов, обращающихся в поездах со скоростью:
3.5.1. При скоростях движения до 120 км/ч:
3.5.2. При скоростях движения от 120 км/ч до 140 км/ч:
3.5.3. При вертикальном подрезе гребня высотой более 18мм. Контроль вертикального подреза гребня бандажа и опасной формы гребня производится специальным шаблоном (рис. 1) и шаблоном ДО-1. Измерение опасной формы гребня у ТПС производится универсальным измерительным шаблоном УТ-1.
Рис. 1. Шаблон для контроля вертикального подреза гребня бандажа
а) Гребень бракуется; б) Гребень не бракуется
3.5.4. При ползуне (выбоине) на поверхности катания у локомотивов, моторвагонного подвижного состава более 1,0 мм.
При обнаружении в пути следования у прицепного вагона МВПС ползуна (выбоины) глубиной более 1,0 мм, но не более 2,0 мм, разрешается довести его без отцепки от поезда со скоростью не выше 100 км/ч до ближайшего локомотивного депо.
При наличии ползуна на колесных парах локомотивов и МВПС допускается их следование без отцепки от поезда до ближайшей станции со скоростью указанной в таблице 1, где колесные пары с ползунами должны быть заменены.
Полное меню
Основные ссылки
Вернуться в «Каталог СНиП»
ГОСТ 30893.1-2002 Основные нормы взаимозаменяемости. Общие допуски. Предельные отклонения линейных и угловых размеров с неуказанными допусками.
ГОСТ 30893.1-2002
(ИСО 2768-1-89)
Основные нормы взаимозаменяемости
Предельные отклонения линейных и угловых размеров
с неуказанными допусками
МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
1 РАЗРАБОТАН Научно-исследовательским и конструкторским институтом средств измерения в машиностроении (ОАО «НИИизмерения»)
2 ВНЕСЕН Госстандартом России
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 22 от 6 ноября 2002 г.)
За принятие проголосовали:
Наименование национального органа по стандартизации
Госстандарт Республики Беларусь
Госстандарт Республики Казахстан
4 Настоящий стандарт представляет собой идентичный текст международного стандарта ИСО 2768-1-1989 «Общие допуски. Часть 1. Допуски линейных и угловых размеров без индивидуально указанных допусков» и содержит дополнительные требования, отражающие потребности экономики страны
5 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 23 июня 2003 г. № 22-ст межгосударственный стандарт ГОСТ 30893.1-2002 (ИСО 2768-1-89) введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2004 г.
ГОСТ 30893.1-2002
(ИСО 2768-1-89)
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
Основные нормы взаимозаменяемости
Предельные отклонения линейных и угловых размеров с неуказанными допусками
Basic norms of interchangeability. General tolerances.
Limit deviations for linear and angular dimensions without tolerance indications
Дата введения 2004-01-01
1 Область применения
Настоящий стандарт распространяется на металлические детали, изготовленные резанием, или детали, изготовленные формообразованием из листового металла, и устанавливает общие допуски для линейных и угловых размеров, если эти допуски не указаны непосредственно у номинальных размеров.
Общие допуски по настоящему стандарту могут применяться также для неметаллических деталей и деталей, обрабатываемых способами, не относящимися к обработке резанием или формообразованию из листового материала, если они не предусмотрены другими стандартами и пригодны для указанных деталей.
Дополнительные требования, отражающие потребности экономики страны, выделены курсивом (см. таблицу 1 и приложение А ).
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 2.307-68 Единая система конструкторской документации. Нанесение размеров и предельных отклонений
ГОСТ 25346-89 Основные нормы взаимозаменяемости. ЕСДП. Общие положения, ряды допусков и основных отклонений
ГОСТ 25348-81 Основные нормы взаимозаменяемости. ЕСДП. Ряды допусков, основных отклонений и поля допусков для размеров свыше 3150 мм
ГОСТ 30893.2-2002 (ИСО 2768-2-89) Основные нормы взаимозаменяемости. Общие допуски. Допуски формы и расположения поверхностей, не указанные индивидуально
3 Определения
В настоящем стандарте применяют следующие термины с соответствующими определениями:
3.1 общий допуск размера: Предельные отклонения (допуски) линейных или угловых размеров, указываемые на чертеже или в других технических документах общей записью и применяемые в тех случаях, когда предельные отклонения (допуски) не указаны индивидуально у соответствующих номинальных размеров.
4 Основные положения
4.1 Общие допуски по настоящему стандарту применяют для следующих размеров с неуказанными индивидуально предельными отклонениями:
— линейных размеров (например, наружных, внутренних, диаметров, радиусов, расстояний, размеров уступов, размеров притупленных кромок: наружных радиусов закругления и размеров фасок);
— линейных и угловых размеров, получаемых при обработке деталей в сборе.
4.2 Общие допуски по настоящему стандарту не применяют для:
— размеров, к которым относятся ссылки на общие допуски по другим стандартам;
— номинальных (теоретически точных) размеров, заключенных в прямоугольные рамки.
Если, кроме указанной ссылки, имеется ссылка на другие стандарты, устанавливающие общие допуски для других способов обработки, например литья, то для размеров с неуказанными предельными отклонениями между обработанными и необработанными поверхностями, например в отливках или поковках, применяется больший из двух общих допусков.
4.4 Общие допуски установлены по четырем классам точности. При выборе класса точности следует учитывать обычную точность соответствующего производства. Если для отдельных размеров необходимы меньшие допуски или допустимы и экономически выгодны большие допуски, то соответствующие предельные отклонения необходимо указать непосредственно у размера согласно ГОСТ 2.307.
4.5 Общие допуски линейных размеров ограничивают только местные размеры элемента, т.е. размеры, измеренные по двухточечной схеме в любом сечении, и не ограничивают все отклонения формы элемента.
4.6 Общие допуски угловых размеров ограничивают угол между прилегающими плоскостями или прямыми, образующими стороны рассматриваемого угла, и не ограничивают отклонений формы элементов, образующих стороны угла.
5 Предельные отклонения линейных и угловых размеров
Размеры в миллиметрах
Предельные отклонения для интервалов номинальных размеров
Размеры в миллиметрах
Предельные отклонения для интервалов номинальных размеров
Предельные отклонения для номинальных длин меньшей стороны угла, мм
6 Указание общих допусков
Ссылка на общие допуски линейных и угловых размеров в соответствии с разделом 5 должна содержать номер настоящего стандарта и буквенное обозначение класса точности, например, для класса точности средний:
ПРИЛОЖЕНИЕ А
Дополнительные варианты назначения предельных отклонений линейных размеров с неуказанными допусками
А.1 Настоящее приложение устанавливает дополнительные варианты предельных отклонений линейных размеров с неуказанными допусками, нашедшие применение в промышленности.
Назначение дополнительных вариантов предельных отклонений линейных размеров с неуказанными допусками при новом проектировании рекомендуется ограничить.
Обозначения предельных отклонений
размеров элементов, не относящихся к отверстиям и валам
А.2 Предельные отклонения по квалитетам (Н, h , ± IT /2) должны соответствовать ГОСТ 25346 и ГОСТ 25348.
Размеры в миллиметрах
Обозначение предельных отклонений
Предельные отклонения для интервалов номинальных размеров
А.3 Неуказанные предельные отклонения размеров притупленных кромок (наружных радиусов скругления и высот фасок) и угловых размеров для дополнительных вариантов должны соответствовать приведенным в таблицах 2 и 3 для соответствующих классов точности.
«Общие допуски по ГОСТ 30893.1: Н14, h 14, ± I Т14/2»
ПРИЛОЖЕНИЕ Б
Принципы назначения общих допусков на линейные и угловые размеры
Б.1 Элементы деталей имеют размеры и геометрические характеристики (форма, ориентация, расположение) поверхностей. Функция деталей требует ограничения размеров и геометрии элементов, т.е. установления определенных пределов (допусков), превышение которых может привести к нарушению этой функции.
Ограничение размеров и геометрии элементов на чертеже должно быть полным и пониматься однозначно: не должно быть разночтений, и ничто не должно оставляться для произвольного истолкования при изготовлении и контроле.
Использование общих допусков размеров и геометрии создает реальные предпосылки для решения этой задачи.
Б.2 Значения общих допусков установлены по классам точности, характеризующим различные уровни обычной производственной точности, достигаемой без применения дополнительной обработки повышенной точности. Выбор класса точности проводят с учетом возможностей производства и функциональных требований к детали.
Б.3 Если по функциональным требованиям для элемента необходимы допуски размеров, меньше чем общие допуски, то они указываются непосредственно у размеров.
То же относится и к случаям, когда по функциональным соображениям требуется иное, чем предусмотрено общим допуском, расположение поля допуска (предельных отклонений) относительно номинального размера. При симметричных предельных отклонениях для общих допусков, установленных в основной части стандарта, несимметричные предельные отклонения, в том числе и односторонние «в тело детали» (от нуля в плюс для отверстий и от нуля в минус для валов), должны при необходимости указываться непосредственно у размера.
Б.4 Увеличение допусков сверх принятых значений общих допусков обычно не дает экономических преимуществ при изготовлении. Например, для диаметра 35 мм детали, изготавливаемой в производственных условиях, которым соответствует класс точности «средний», замена предельных отклонений ±0,3 мм (общий допуск) на ±1 мм не даст преимуществ для данного производства, даже если отклонения +1 мм допустимы по условиям функционирования.
В тех случаях, когда допуск, превышающий общий допуск, все же дает экономию при изготовлении детали и может быть разрешен, исходя из ее служебного назначения, соответствующие предельные отклонения указывают непосредственно у размера.
Б.5 Применение общих допусков дает следующие преимущества:
— чертежи легче читаются, облегчается связь с пользователем чертежом;
— конструктор экономит время за счет исключения детальных расчетов допусков; достаточно только знать, что допуск, исходя из функциональнее назначения детали, больше общего допуска или равен ему;
— чертежи четко показывают, какие элементы могут быть изготовлены при обычных возможностях процесса, что облегчает управление качеством, благодаря снижению уровня контроля этих элементов;
— остальные размеры, которые имеют индивидуально указанные допуски, по большей части относятся к элементам, для которых их функция требует относительно малых допусков и которые, следовательно, могут требовать особых усилий при изготовлении; это обстоятельство облегчает планирование производства и помогает службе контроля качества при анализе требований к контролю;
— для работников служб снабжения и субподрядчиков упрощается работа по заключению договоров, так как обычная производственная точность известна до заключения контрактов; это устраняет также споры между поставщиком и потребителем при поставках продукции, так как чертежи с точки зрения требований являются полными.
Перечисленные преимущества применения общих допусков будут проявляться в полной мере, если есть уверенность в том, что общие допуски не будут превышены при изготовлении, то есть обычная производственная точность данного производства обеспечивает соблюдение общих допусков, указанных на чертежах.
Поэтому производству рекомендуется:
— определять с помощью измерений, какова для него обычная производственная точность;
— принимать только те чертежи, в которых общие допуски соответствуют или превышают его обычную производственную точность;
— контролировать выборочно размеры с общими допусками, чтобы убедиться, что обычная производственная точность не отклоняется от первоначально установленной.
Б.6 Подход к назначению общих допусков предполагает, что в ряде случаев допуск, вытекающий из функциональных требований, превышает общий допуск. Поэтому функция детали не всегда нарушается, если общий допуск случайно превышен для какого-либо ее элемента.
Выход размеров деталей за общий допуск (неуказанные предельные отклонения) не должен вести к их автоматическому забракованию, если не нарушена способность детали к функционированию и если в документации не оговорено другое истолкование неуказанных предельных отклонений.
Ключевые слова : общие допуски, допуски линейных размеров, допуски угловых размеров
Колёсная пара
Колёсная пара — воспринимает массу всего вагона направляет его движение по рельсовому пути, испытывая удары от его неровностей и в свою очередь жёстко воздействуя на путь. Под действием тяговых двигателей и тормозной системы колёсные пары, взаимодействуют с рельсами, создают тяговое и тормозное усилия вагона.
Колёсная пара состоит:
Оси изготавливают из специальной осевой стали. На подступичные части напрессовывают колёса, на предступичные части насаживают в горячем состоянии лабиринтные кольца для уплотнения корпусов букс, а на шейки — внутренние кольца буксовых подшипников.
Каждая колесная пара должна иметь на оси четко поставленные знаки о времени и месте формирования и полного освидетельствования колесной пары, а также клейма о приемке ее при формировании. Знаки и клейма ставятся в установленных местах. Колесные пары должны подвергаться осмотру под подвижным составом, обыкновенному и полному освидетельствованиям, а при подкатке регистрироваться в соответствующих Журналах и паспортах.
Расстояния между внутренними гранями у ненагруженной колесной пары должно быть 1440 мм. Отклонения допускаются в сторону увеличения или уменьшения не более 3 мм, а для вновь изготавливаемых колесных пар отклонения допускаются: в сторону увеличения — 1 мм, в сторону уменьшения — 3 мм. Уменьшение расстояния между внутренними гранями колес в нижней точке у нагруженной колесной пары допускается не более 2 мм от размера, указанного в паспорте колесной пары.