какое основание является амфотерным

Какое основание является амфотерным

** §8.6 Амфотерные основания.

Гидроксид цинка Zn(OH) 2 является малорастворимым основанием. Его можно получить, действуя щелочью на какую-нибудь растворимую соль цинка – при этом Zn(OH) 2 выпадает в осадок:

ZnCl 2 + 2 NaOH = Zn(OH) 2 ↓ + 2 NaCl

Подобно всем другим основаниям, осадок гидроксида цинка легко растворяется при добавлении какой-нибудь кислоты:

Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2 H 2 O

Это явление объясняется тем, что в присутствии избытка сильного основания гидроксид цинка способен отдавать атомы водорода, подобно кислоте:

Zn(OH) 2 или H 2 ZnO 2

Происходит реакция нейтрализации наподобие той, которая могла бы произойти между NaOH и кислотой. Эта кислота (цинковая кислота H 2 ZnO 2 ) и гидроксид цинка Zn(OH) 2 являются одним и тем же соединением! Сокращенная (но не структурная) формула этого соединения может быть записана двумя способами:

H–O–Zn–O–H единственная структурная формула.

Поскольку прочность связей Н–О и O–Zn сравнимы между собой, гидроксид цинка способен быть как основанием в присутствии кислоты, так и кислотой – в присутствии основания:

Na 2 ZnO 2 + 2H 2 O

реагирует как основание

реагирует как кислота

Амфотерными называются такие гидроксиды, которые способны отдавать в реакциях с другими соединениями как атомы (ионы) водорода, так и гидрокси-группы (анионы гидроксила).

Объяснение проявления амфотерности у одних металлов и отсутствие ее у других следует искать в теории химической связи.

Можно заметить, что амфотерные свойства проявляют те металлы, которые в Периодической таблице находятся наиболее близко к неметаллам. Как известно, неметаллы обладают большей электроотрицательностью (по сравнению с металлами), поэтому их связь с кислородом носит ковалентный характер и отличается значительной прочностью.

Связи между металлами и кислородом, как правило, ионные (из-за низкой электроотрицательности металлов). Такие связи часто менее прочны, чем ковалентные (вспомните атомные кристаллы).

Соединение B(OH) 3 имеет внутри молекулы наиболее «ковалентную» связь бора с кислородом, поскольку бор ближе по электроотрицательности к кислороду, чем Al и Сa. Из-за высокой электроотрицательности бору энергетически выгоднее входить в состав отрицательно заряженной частицы – то есть кислотного остатка. Поэтому формулу B(OH) 3 чаще записывают как H 3 BO 3 :

H 3 BO 3 = 3H + + BO 3 3- (в растворе)

Кальций – наименее электроотрицательный из этих элементов, поэтому в его молекуле связь Са–О носит ионный характер. Из-за низкой электроотрицательности для кальция выгодно существование в виде катиона Ca 2+ :

В связи с этим в структурных формулах пунктирными линиями отмечены связи, разрыв которых энергетически более выгоден.

Структурные формулы показывают, что соединение B(OH) 3 будет легче отдавать ионы водорода, чем ионы гидроксида, т.е. является кислотой (и по традиции должно быть записано сокращенной формулой H 3 BO 3 ). Напротив, Ca(OH) 2 – типичное основание. Гидроксид алюминия, в котором центральный атом имеет промежуточную электроотрицательность, может проявлять как свойства кислоты, так и основания – в зависимости от партнера по реакции нейтрализации. Это наблюдается в действительности. В первой из приведенных ниже реакций Al(OH) 3 реагирует как обычное основание, а в следующих – как кислота:

2 Al(OH) 3 + 3 H 2 SO 4 = Al 2 (SO 4 ) 3 + 6 H 2 O.

Al(OH) 3 + NaOH = NaAlO 2 + 2 H 2 O ( при сплавлении);

Al(OH) 3 + NaOH = Na[Al(OH) 4 ] (при добавлении раствора NaOH без нагревания).

У цинка электроотрицательность практически такая же, как у алюминия (1,65), поэтому гидроксид цинка Zn(OH) 2 проявляет похожие свойства. Таким образом, амфотерные гидроксиды взаимодействуют как с растворами кислот, так и с растворами щелочей.

8.18. Закончите уравнения реакций:

8.19 (ФМШ). Напишите уравнения реакций, описывающие следующие химические превращения:

а) ZnCl 2 + KOH (избыток) → осадок → растворение осадка;

б) Cr(NO 3 ) 2 + NaOH (избыток) → осадок → растворение осадка;

в) Be(NO 3 ) 2 + LiOH (избыток) → осадок → растворение осадка;

г) Al 2 (SO 4 ) 3 + KOH (избыток) → осадок → растворение осадка;

8.20 (НГУ). Осуществите следующие превращения:

Al 2 O 3 → Al → Al 2 O 3 → NaAlO 2 → AlCl 3

Источник

Урок №46. Амфотерные оксиды и гидроксиды

Кислотный остаток (А)

со щелочами проявляет кислотные свойства:

со щелочами проявляет кислотные свойства:

со щелочами проявляет кислотные свойства:

со щелочами проявляет кислотные свойства:

ПОНЯТИЕ ОБ АМФОТЕРНЫХ ОКСИДАХ И ГИДРОКСИДАХ

2Al(OH) 3 + 3SO 3 = Al 2 (SO 4 ) 3 + 3H 2 O

Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4 ) 3 + 3H 2 O

2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Al 2 O 3 + 2NaOH = t°C = 2NaAlO 2 + H 2 O (при сплавлении)

Если реакция протекает в водном растворе: Al(OH) 3 + NaOH = Na[Al(OH) 4 ]

здесь AlO 2 (I) – одновалентный кислотный остаток метаалюминат

Zn(OH) 2 + SO 3 = ZnSO 4 + H 2 O

ZnO + H 2 SO 4 = H 2 O + ZnSO 4

Zn(OH) 2 + Na 2 O = Na 2 ZnO 2 + H 2 O

Zn(OH) 2 + 2NaOH = Na 2 [Zn(OH) 4 ]

ZnO + 2NaOH = Na 2 ZnO 2 + H 2 O

здесь ZnO 2 (II) – двухвалентный кислотный остаток цинкат.

Оксиды и гидроксиды, которые способны реагировать и с кислотами, и со щелочами, называют амфотерными.

Химические элементы, которым соответствуют амфотерные оксиды и гидроксиды, обладают переходными химическими свойствами, не относящимися ни к металлам, ни к неметаллам, их называют амфотерными.

Амфотерность (от греч. Аmphoteros – и тот, и другой) – способность химических соединений проявлять и кислотные, и основные свойства в зависимости от природы реагента, с которым амфотерное вещество вступает в кислотно-основное взаимодействие. Амфотерные оксиды и гидроксиды – оксиды и гидроксиды, проявляющие как основные, так и кислотные свойства. Они реагируют как с кислотами, так и с основаниями. Амфотерным оксидам соответствуют амфотерные гидроксиды, например,

Амфотерные гидроксиды практически нерастворимы в воде. Они являются слабыми кислотами и слабыми основаниями.

Амфотерными оксидами и гидроксидами являются, как правило, оксиды и гидроксиды металлов, в которых валентность металла III, IV иногда II.

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ГИДРОКСИДОВ

(нерастворимы в воде)

1.Реагируют с кислотами: Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

2.Реагируют со щелочами: Zn(OH) 2 + 2NaOH = Na 2 [Zn(OH) 4 ]

ПРИМЕНЕНИЕ

Из всех амфотерных гидроксидов наибольшее применение находит гидроксид алюминия:

· лекарственные препараты, приготовленные на основе гидроксида алюминия, врач назначает при нарушении кислотно-щелочного баланса в пищеварительном тракте;

· в качестве антипирена (средства для подавления способности гореть) вещество вводят в состав пластмасс и красок;

· путём разложения гидроксида алюминия в металлургии получают оксид алюминия (глинозём) — сырьё для получения металлического алюминия.

Товары, в производстве которых используется гидроксид алюминия: лекарственный препарат «Алмагель» и металлургический глинозём

Гидроксид цинка в промышленности служит сырьём для получения различных соединений этого металла, в основном — солей.

Источник

Служба консультаций по химии

Основания. Амфотерные гидроксиды

Основания, их классификация, свойства, получение

1. Какие из перечисленных веществ относятся к основаниям: LiOH, CH3COOH, Fe(OH)2, CH3NH2, H2SO3, Mg(OH)2?

NaOH гидроксид натрия

2. Состав веществ (наличие кислорода)

3. Кислотность оснований (по числу гидроксильных групп)

KOH — гидроксид калия

4. Степень электролитической диссоциации

Fe(OH)2 — гидроксид железа (II)

NaOH гидроксид натрия

5. Растворимость в воде

NaOH гидроксид натрия

7. Устойчивость к нагреванию

KOH — гидроксид калия

2. Охарактеризуйте гидроксид кальция Сa(OH) 2 по всем признакам классификации.

Получение растворимых оснований (щелочей)

Получение нерастворимых оснований

1. Реакцией обмена (если один из продуктов выпадает в осадок):

Нерастворимые основания получают реакцией обмена между раствором соли и раствором щелочи:

2. Растворимые основания (щелочи) можно получить взаимодействием щелочного и щелочно-земельного металла или их оксидов с водой:
2Na + 2H2O = 2NaOH + H2

3. Электролизом водного раствора соли хлоридов щелочных металлов (в качестве побочного продукта образуется хлор):

2NaCl + 2H2O = 2NaOH + H2 + Cl2 (действием электрического тока)

Химические свойства оснований

2. Взаимодействие с кислотами с образованием соли (реакция нейтрализации):

3. Взаимодействие щелочей с кислотными оксидами с образованием соли и воды:

4. Взаимодействие раствора щелочи с растворами различных солей с образованием нерастворимого основания:

5. Разложение нерастворимых оснований при нагревании с образованием оксида металла и воды:

Cu(OH)2 = CuO + H2O (при нагревании)


6. Взаимодействие растворов щелочи с некоторыми неметаллами:

2NaOH + Cl2 = NaCl + NaClO + H2O (на холоде)
6NaOH + 3Cl2 = 5NaCl + NaClO3 + 3H2O (при нагревании)
2NaOH + Si = Na2SiO3 + 2H2

Взаимодействие щелочи с некоторыми металлами (образующие амфотерные соединения).

а) Какие из перечисленных веществ реагируют с гидроксидом натрия?

б) Напишите уравнения возможных реакций.

в) Какая из приведенных реакций относится к реакции нейтрализации?

5. Какие вещества разлагаются при нагревании: Fe(OH)2, NaOH, Al(OH)3, Fe(OH)3, Ba(OH)2? Напишите уравнения возможных реакций.

6. В трех пробирках даны растворы хлорида натрия, соляной кислоты, гидроксида натрия. Как можно распознать эти растворы химическим способом?

7. Какая масса щелочи NaOH должна находиться в растворе для реакции с 16 г сульфата меди (II), чтобы получить осадок гидроксида меди(II)?

1) Взаимодействие амфотерных гидроксидов с кислотами:

2) Взаимодействие амфотерных гидроксидов со щелочью:

Al(OН) 3 + NaOH = Na[Al(OH) 4 ] (тетрагидроксоалюминат натрия)
Zn(OН) 2 + 2NaOH = Na 2 [Zn(OH) 4 ] (тетрагидроксоцинкат натрия)

. 8. а) Приведите примеры реакций, доказывающие свойства гидроксида цинка.

б) В какой из приведенных реакций гидроксид цинка проявляется себя как кислота?

в) В какой из приведенных реакций гидроксид цинка проявляется себя как основание?

г) Напишите уравнение реакции получения гидроксида цинка.

Ответы на вопросы, которые вы встретили в конспекте, вы можете отправить в отдельное задание.

Источник

2.5. Характерные химические свойства оснований и амфотерных гидроксидов.

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

какое основание является амфотерным

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

какое основание является амфотерным

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

какое основание является амфотерным

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:

какое основание является амфотерным

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

какое основание является амфотерным

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних солей:

какое основание является амфотерным

Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

какое основание является амфотерным

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

какое основание является амфотерным

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

какое основание является амфотерным

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:

какое основание является амфотерным

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

какое основание является амфотерным

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000 o C:

какое основание является амфотерным

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 o C:

какое основание является амфотерным

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с кислотами:

какое основание является амфотерным

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

какое основание является амфотерным

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):

какое основание является амфотерным

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

какое основание является амфотерным

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

какое основание является амфотерным

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

какое основание является амфотерным

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду:

Источник

Какое основание является амфотерным

Гидроксиды – это неорганические соединения, образованные тем или иным элементом, кислородом и водородом. В гидроксидах обязательно имеется водород, связанный с кислородом (связь О–Н). В некоторых гидроксидах водород может непосредственно соединяться с атомами элемента. Например, в H3РO3 два атома водорода связаны с атомами кислорода, а один – с атомом фосфора.

В ряде случаев гидроксиды являются продуктами гидратации (соединения с водой) соответствующих оксидов, хотя многие оксиды непосредственно с водой не взаимодействуют. В результате дегидратации гидроксидов образуются соответствующие оксиды.

Гидроксиды могут быть основными (основания), кислотными (кислородсодержащие кислоты) и амфотерными. Примерами основных гидроксидов являются NaOH, Ва(ОН)2, Mg(OH)2. Примерами кислотных гидроксидов являются НСlO4 (хлорная кислота, высший гидроксид хлора), H3РO4 (ортофосфорная кислота, высший гидроксид фосфора), H2SO4 (серная кислота, высший гидроксид серы).

Графические формулы перечисленных гидроксидов приведены ниже. Во всех гидроксидах имеется связь О–Н:

какое основание является амфотерным

ПОНЯТИЕ ОБ АМФОТЕРНЫХ ОКСИДАХ И ГИДРОКСИДАХ

Амфотерность (от греч. amphoteros – и тот, и другой) – способность химических соединений проявлять и кислотные, и основные свойства в зависимости от природы реагента, с которым амфотерное вещество вступает в кислотно-основное взаимодействие.

Амфотерные оксиды и гидроксиды – оксиды и гидроксиды, проявляющие как основные, так и кислотные свойства. Они реагируют как с кислотами, так и с основаниями. Амфотерным оксидам соответствуют амфотерные гидроксиды, например: ВeО – Вe(ОН)2, Сr2O3 – Сr(ОН)3.

Амфотерные гидроксиды практически нерастворимы в воде. Их основные и кислотные свойства выражены слабо, они являются слабыми кислотами и слабыми основаниями.

Амфотерными оксидами и гидроксидами являются, как правило, оксиды и гидроксиды металлов, в которых степень окисления металла +3, +4, иногда +2.

Среди оксидов элементов главных подгрупп амфотерными являются: BeO, Al2O3, SnO, SnO2, PbO, Sb2O3.

Амфотерными гидроксидами являются следующие гидроксиды элементов главных подгрупп: Ве(ОН)2, Al(ОН)3, Рb(ОН)2 и некоторые другие.

Оксиды и гидроксиды элементов побочных подгрупп, соответствующие высоким степеням окисления, как правило, являются кислотными, например: СrO3 (ему соответствует H2СrO4), Мn2O7 (ему соответствует НМnO4).

Для низших оксидов и гидроксидов характерно преобладание основных свойств, например: СrO и Сr(ОН)2, МnО и Мn(ОН)2.

Оксиды и гидроксиды, в которых степени окисления элементов +3 и +4, являются, как правило, амфотерными: Сг2O3 и Cr(OH)3, Fe2O3 и Fe(OH)3. Однако последние элементы в декадах d–элементов (например, Zn) образуют амфотерные оксиды и гидроксиды даже в низких степенях окисления, например ZnO и Zn(OH)2.

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ И ГИДРОКСИДОВ

Рассмотрим амфотерные свойства оксида и гидроксида цинка – ZnO и Zn(OH)2. Оба вещества реагируют с кислотами:

ZnO + 2HNO3 = Zn(NO3)2 + H2O
Zn(OH)2 + H2SO4 = ZnSO4 + 2H2O

Оксид и гидроксид цинка реагируют также и со щелочами:какое основание является амфотерным

При диссоциации этих солей в растворах образуются ионы, в которых цинк входит в состав анионов, поэтому говорят, что в этих соединениях «цинк в анионной форме».

Докажем амфотерность оксида и гидроксида алюминия Al(ОН)3. Он растворяется в кислотах с образованием солей, где алюминий находится в катионной форме:

Al(ОН)3 + 3Н + = Al 3+ + 3H2O

Но гидроксид алюминия взаимодействует и со щелочами. При сплавлении со щелочами образуются алюминаты (метаалюминаты):

Al(ОН)3 + NaOH = NaAlO2 + 2H2O

В образовавшейся соли алюминий образует анион AlO2 – (алюминий в анионной форме). В растворах в результате реакции со щёлочью образуется комплексный тетрагидроксоалюминат-ион [Al(ОН)4] – :

Al(ОН)3 + NaOH = Na[Al(OH)4] (тетрагидроксоалюминат натрия)

Некоторые амфотерные оксиды и гидроксиды не проявляют амфотерность в обычных условиях и в растворах ведут себя как основные. Амфотерность таких соединений проявляется в более жёстких условиях. Например, гидроксид железа (III) Fe(OH)3 легко реагирует с кислотами:

Fe(OH)3 + 3НCl = FeCl3 + 3H2O
Fe(OH)3 + NaOH = NaFeO2 + 2H2O

Признаком этой реакции будет растворение бурого осадка. А вот при добавлении раствора щёлочи гидроксид железа (III) не растворяется. Тогда, может быть, считать его основанием, не растворимым в воде? Дело в том, что в данном случае соль образуется при плавлении со щёлочью.

Естественно, что в ходе плавления происходит разложение гидроксида на оксид и воду, и в действительности реакция идёт между оксидом и щёлочью:

Fe2O3 + 2NaOH = 2NaFeO2 + H2O

Таким образом, гидроксид железа (III) можно отнести к амфотерным гидроксидам, хотя основные свойства у него преобладают.

Конспект урока по химии для 8 класса «Амфотерные оксиды и гидроксиды». Выберите дальнейшее действие:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *