какое определение наиболее полно отражает понятие искусственный интеллект

Искусственный интеллект

Искусственный интеллект – это технология, а точнее направление современной науки, которое изучает способы обучить компьютер, роботизированную технику, аналитическую систему разумно мыслить также как человек. Собственно мечта об интеллектуальных роботах-помощниках возникла задолго до изобретения первых компьютеров.

какое определение наиболее полно отражает понятие искусственный интеллект

Людей в середине 50-х годов прошлого столетия сильно поразили возможности вычислительных машин, особенно способности ЭВМ, безошибочно выполнять множество задач одновременно. В головах ученых и писателей сразу возникли фантастические идеи о мыслящих машинах. Именно в этот период начинают зарождаться первые технологии искусственного интеллекта.

Исследования в сфере ИИ ведутся путем изучения умственных способностей человека и переложения полученных результатов в поле деятельности компьютеров. Таким образом, искусственный интеллект получает информацию из самых разных источников и дисциплин. Это и информатика, математика, лингвистика, психология, биология, машиностроение. На основе массива данных с помощью технологии машинного обучения компьютеры пытаются имитировать интеллект человека.

Главные цели ИИ достаточно прозрачны:

История развития искусственного интеллекта

Авторство термина «искусственный интеллект» приписывают Джону Маккарти – основоположнику программирования, изобретателю языка Лисп. В 1956 году будущий лауреат престижной премии Тьюринга продемонстрировал в университете Карнеги-Меллон прототип программы на основе ИИ.

Умными роботами человечество начало грезить в первой четверти 20 века. Известный литератор Карел Чапек в 1924 года поставил в лондонском театре пьесу «Универсальные роботы». Представление поразило публику, а слово «робот» прочно вошло в обиход.

какое определение наиболее полно отражает понятие искусственный интеллект

В 1943-45 годах закладываются основы для понимания и создания нейронных сетей, а уже в 1950 году Алан Тьюринг публикует в научном издании анализ интеллектуальной шахматной игры. В 1958 году появляется первый язык программирования искусственного интеллекта – Лисп.

В период с 1960 по 1970 ряд ученых доказали, что компьютеры способны понимать естественный язык на достаточно хорошем уровне. В 1965 году разработали Элизу – первого робота-помощника, который мог говорить на английском языке. В эти же годы направление ИИ стало привлекать правительственные и военные организации США, СССР и других стран. Так Министерство обороны США уже к 70-м годам запустило проект виртуальных уличных карт – прототип GPS.

В 1969 году ученые Стэнфордского университета создали Шеки – робота с ИИ, способного самостоятельно перемещаться, воспринимать некоторые данные и решать несложные задачи.

В Эдинбургском университете четырьмя годами позже (1973) был создан робот Фредди – это шотландский представитель семейства ИИ мог использовать компьютерное зрение для того, чтобы находить и собирать разные модели.

В СССР искусственный интеллект также развивался стремительно. Академики А.И. Берг и Г.С.Поспелов в 1954-64 годах создают программу «АЛПЕВ ЛОМИ», которая автоматически доказывает теоремы. В эти же годы советскими учеными был разработан алгоритм «Кора», который моделирует деятельность человеческого мозга при распознавании образов. В 1968 году Турчиным В.Ф создается символьный язык обработки данных РЕФАЛ.

80-е годы XX века стали прорывными для ИИ. Учеными были разработаны обучающие машины – интеллектуальные консультанты, которые предлагали варианты решений, умели самообучаться на начальном уровне, общались с человеком на ограниченном, но уже естественном языке.

В 1997 году создали известную шахматную программу – компьютер «Дип Блю», который обыграл чемпиона мира по шахматам Гарри Каспарова. В эти же годы Япония приступает к разработке проекта компьютера 6-го поколения на основе нейросетей.

Интересен факт, что в 1989 году другая шахматная программа Deep Thought обыграла гроссмейстера международного уровня Бента Ларсена. После этого поединка машины и человека, Гарри Каспаров заявил:

«Если интеллектуальная машина сможет переиграть в шахматы лучшего из лучших, значит, она сможет писать самую лучшую музыку, сочинять самые лучшие книги. Я не могу в это поверить. Когда я узнаю, что ученые создали компьютер с рейтингом интеллекта 2800, то есть равному моему, я сам вызову машину на шахматный поединок, чтобы защитить человеческую расу»

какое определение наиболее полно отражает понятие искусственный интеллект

В 2000-е годы вновь появился интерес к робототехнике. ИИ активно внедряется в космическую отрасль, а также осваивается в бытовой сфере. Появляются системы умного дома, «продвинутые» бытовые устройства. Роботы Кисмет и Номад исследуют районы Антарктиды.

С 2008 начинается эра технологической сингулярности, которая по расчетам экспертов должна выйти в зенит в 2030 году. Начинается интеграция человека с вычислительными машинами, увеличиваются возможности человеческого мозга, появляются биотехнологии.

Принципы ИИ

Прежде чем описываться технологические принципы, без которых немыслимо развитие искусственного интеллекта, стоит познакомиться с этическими законами робототехники. Их в 1942 году вывел Айзек Азимов в своём романе «Хоровод»:

До выхода в свет романа Азимова, искусственный интеллект ассоциировался с образом Франкенштейна Мэри Шелли. Искусственно созданное подобие человека с разумом восстает против людей. Эту же страшилку перенесли и в знаменитый блокбастер Голливуда «Терминатор».

какое определение наиболее полно отражает понятие искусственный интеллект

Интересен факт, что в 1986 году Айзек Азимов дописал еще один пункт к законам робототехники. Писатель предпочел назвать его «нулевым»:

0. Робот не может навредить человеку, если только не докажет, что в конечном итоге это (вред) будет полезно для всего человечества.

Разобравшись с этическими законами, перейдем к технологическим принципам искусственного интеллекта:

какое определение наиболее полно отражает понятие искусственный интеллект

какое определение наиболее полно отражает понятие искусственный интеллект

какое определение наиболее полно отражает понятие искусственный интеллект

Кроме того, трудно представить существование искусственного интеллекта без мощных графических процессоров, которые являются сердцем интерактивной обработки данных. Для интеграции ИИ в различные программы и устройства необходима технология API – программные интерфейсы приложений. Используя API можно без труда добавлять технологии искусственного интеллекта в любые компьютерные системы: домашняя безопасность, умный дом, оборудование на ЧПУ и прочее.

Сфера использования ИИ

какое определение наиболее полно отражает понятие искусственный интеллект

Искусственный интеллект постепенно приходит во все отрасли человеческой деятельности, делая обычные программные комплексы интеллектуальными:

Основные проблемы ИИ

какое определение наиболее полно отражает понятие искусственный интеллект

Как вы понимаете возможности искусственного интеллекта на данной стадии развития не безграничны. Перечислим главные трудности:

Резюме

Мы познакомились с понятием, что такое искусственный интеллект. Изучили основные принципы: этические и технологические. Рассмотрели главные препятствия на пути развития ИИ. Искусственный интеллект тесно связан с развитием компьютерной техники, а также таких наук как математика, статистика, комбинаторика и других.

Источник

Искусственный интеллект, машинное обучение и глубокое обучение: в чём разница

Компьютер запросто диагностирует рак, управляет автомобилем и умеет обучаться. Почему же машины пока не захватили власть над человечеством?

какое определение наиболее полно отражает понятие искусственный интеллект

какое определение наиболее полно отражает понятие искусственный интеллект

Мы пользуемся Google-картами, позволяем сайтам подбирать для нас интересные фильмы и советовать, что купить. И, в общем-то, слышали, что под капотом всех этих умных вещей — искусственный интеллект, машинное обучение и deep learning. Но сможете ли вы с ходу отличить одно от другого? Разбираемся на примерах.

Что такое искусственный интеллект

Искусственный интеллект (англ. artificial intelligence) — это способность компьютера обучаться, принимать решения и выполнять действия, свойственные человеческому интеллекту.

Кроме того, ИИ — это наука на стыке математики, биологии, психологии, кибернетики и ещё кучи всего. Она изучает технологии, которые позволяют человеку писать «интеллектуальные» программы и учить компьютеры решать задачи самостоятельно. Главная задача ИИ — понять, как устроен человеческий интеллект, и смоделировать его.

В области искусственного интеллекта есть подразделы. К ним относятся робототехника, наука о компьютерном зрении, обработка естественного языка и машинное обучение.

Хотите знать, может ли машина мыслить и чувствовать как человек? Приходите на курс «Философия искусственного интеллекта». Здесь вы получите новые знания об ИИ, обсудите актуальные вопросы с преподавателями и однокурсниками и прокачаете навык публичных выступлений.

какое определение наиболее полно отражает понятие искусственный интеллект

Пишет про digital и машинное обучение для корпоративных блогов. Топ-автор в категории «Искусственный интеллект» на Medium. Kaggle-эксперт.

Каким бывает искусственный интеллект

Исследователи обычно делят ИИ на три группы:

Слабый ИИ (Weak, или Narrow AI)

Слабый интеллект — тот, что нам уже удалось создать. Такой ИИ способен решать определённую задачу. Зачастую даже лучше, чем человек. Например, как Deep Blue — компьютерная программа, которая обыграла Гарри Каспарова в шахматы ещё в 1996 году. Но такая Deep Blue не умеет делать ничего другого и никогда этому не научится. Слабый ИИ используют в медицине, логистике, банковском деле, бизнесе:

Это несколько примеров, в реальности применений намного больше.

Сильный ИИ (Strong, или General AI)

Как выглядел бы сильный искусственный интеллект, можно увидеть в игре Detroit: Become Human.

Во вселенной Detroit роботы способны учиться, мыслить, чувствовать, осознавать себя и принимать решения. Одним словом, становятся похожи на человека. А в обычной жизни ближе всего к General AI чат-боты и виртуальные ассистенты, которые имитируют человеческое общение. Здесь ключевое слово — имитируют. Siri или Алиса не думают — и неспособны принимать решения в ситуациях, которым их не обучили. Сильный искусственный интеллект пока остаётся мечтой.

Суперинтеллект (Superintelligence)

Суперинтеллект мы не только не создали, но и не имеем пока что ни малейшего представления, как это сделать и можно ли вообще. Это не просто умные машины, а компьютеры, которые во всём превосходят людей. Проще говоря, что-то из области фантастики.

Машинное обучение: как учится ИИ

Машинное обучение (англ. machine learning) — это один из разделов науки об ИИ. Здесь используются алгоритмы для анализа данных, получения выводов или предсказаний в отношении чего-либо. Вместо того чтобы кодировать набор команд вручную, машину обучают и дают ей возможность научиться выполнять поставленную задачу самостоятельно.

Чтобы машина могла принимать решения, необходимы три вещи:

В машинном обучении много разных алгоритмов. Один из самых простых — линейная регрессия. Её применяют, если есть линейная зависимость между переменными. Пример: чем больше сумма заказа, тем больше вы оставите чаевых. По имеющимся данным можно предсказать сумму чаевых в будущем. В общем-то, простая математика.

Есть байесовские алгоритмы. В их основе применение теоремы Байеса и теории вероятности. Эти алгоритмы используют для работы с текстовыми документами — например, для спам-фильтрации. Программе нужно дать наборы данных по категориям «спам» и «не спам». Дальше алгоритм будет самостоятельно оценивать вероятность того, что слова «Бесплатные туры для пенсионеров» и «Закажи маме тур, пожалуйста» относятся к той или иной категории.

А ещё есть нейронные сети, о них вы наверняка слышали. Они относятся к методам глубокого машинного обучения, и об этом чуть подробнее.

Deep learning: глубокое обучение для разных целей

Глубокое обучение — подраздел машинного обучения. Алгоритмам глубокого обучения не нужен учитель, только заранее подготовленные (размеченные) данные.

Самый популярный, но не единственный метод глубокого обучения, — искусственные нейронные сети (ИНС). Они больше всего похожи на то, как устроен человеческий мозг.

Нейронные сети — это набор связанных единиц (нейронов) и нейронных связей (синапсов). Каждое соединение передаёт сигнал от одного нейрона к другому, как в мозге человека. Обычно нейроны и синапсы организованы в слои, чтобы обрабатывать информацию. Первый слой нейросети — это вход, который получает данные. Последний — выход, результат работы. Например, несколько категорий, к одной из которых мы просим отнести то, что было отправлено на вход. И между ними — скрытые слои, которые выполняют преобразование.

какое определение наиболее полно отражает понятие искусственный интеллект

По сути, скрытые слои выполняют какую-то математическую функцию. Мы её не задаём, программа сама учится выводить результат. Можно научить нейросеть классифицировать изображения или находить на изображении нужный объект. Помните, как reCAPTCHA просит найти все изображения грузовиков или светофоров, чтобы доказать, что вы не робот? Нейронная сеть выполняет то же самое, что и наш мозг, — видит знакомые элементы и понимает: «О, кажется, это грузовик!»

А ещё нейросети могут генерировать объекты: музыку, тексты, изображения. Например, компания Botnik скормила нейросети все книги про Гарри Поттера и попросила написать свою. Получился «Гарри Поттер и портрет того, что выглядит как огромная куча пепла». Звучит немного странно, но как минимум с точки зрения грамматики это сочинение имеет смысл.

Сегодня нейронные сети могут применяться практически для любой задачи. Например, при диагностике рака, прогнозировании продаж, идентификации лиц в системах безопасности, машинных переводах, обработке фотографий и музыки.

Чтобы обучить нейросеть, нужны гигантские наборы тщательно отобранных данных. Например, для распознавания сортов огурцов нужно обработать 1,5 млн разных фотографий. Не получится просто слить рандомные картинки или текст из интернета — их нужно подготовить: привести к одному формату и удалить то, что точно не подходит (например, мы классифицируем пиццу, а в наборе данных у нас фото грузовика). На разметку данных — подготовку и систематизацию — уходят тысячи человеко-часов.

Чтобы создать новую нейросеть, требуется задать алгоритм, прогнать через него все данные, протестировать и неоднократно оптимизировать. Это сложно и долго. Поэтому иногда проще воспользоваться более простыми алгоритмами — например, регрессией.

Подведём итоги

Искусственный интеллект — одновременно и наука, которая помогает создавать «умные» машины, и способность компьютера обучаться и принимать решения.

Машинное обучение — одна из областей искусственного интеллекта. МО использует алгоритмы для анализа данных и получения выводов.

А глубокое обучение — лишь один из методов машинного обучения, в рамках которого компьютер учится без учителя подспудно, с помощью данных.

Если чувствуете, что вас привлекает проектирование машинного интеллекта, продолжить образование можно на нашем курсе. Вы научитесь писать алгоритмы, собирать и сортировать данные и получите престижную профессию Data Scientist — специалист по машинному обучению.

Источник

Искусственный интеллект: краткая история, развитие, перспективы

какое определение наиболее полно отражает понятие искусственный интеллект

Сейчас технологии развиваются с немыслимой скоростью. Ранее те возможности, что, казалось бы, были доступны только профессиональным ученым, в современной жизни доступны каждому. Один из подобных прорывов – искусственный интеллект, прочно обосновавшийся во многих сферах человеческой жизни.

Сегодня поговорим о том, что такое ИИ, как он возник, где применяется, а также чем он отличается от человеческого разума.

Что представляет собой искусственный интеллект

Искусственный интеллект – это свойство интеллектуальной системы выполнять те функции и задачи, которые обычно характерны для разумных существ. Это может быть проявление каких-то творческих способностей, склонность к рассуждению, обобщение, обучение на основании полученного ранее опыта и так далее.

какое определение наиболее полно отражает понятие искусственный интеллект

Его развитием занимается направление науки, в рамках которого происходит аппаратное или программное моделирование тех задач человеческой деятельности, что считаются интеллектуальными. Еще под ИИ часто подразумевают направление в IT, основной целью которого является воссоздание разумных действий и рассуждений с помощью компьютерных систем.

История возникновения и развития искусственного интеллекта

Впервые термин artificial intelligence (с английского переводится как «искусственный интеллект») был упомянут в 1956 году Джоном МакКарти, основателем функционального программирования и изобретателем языка Lisp, на конференции в Университете Дартмута.

Однако сама идея подобной системы была сформирована в 1935 году Аланом Тьюрингом. Ученый дал описание абстрактной вычислительной машине, состоящей из безграничной памяти и сканера, перемещающегося вперед и назад по памяти. Однако позднее, в 1950 году, он предложил считать интеллектуальными те системы, которые в общении не будут отличаться от человека.

Тогда же Тьюринг разработал эмпирический тест для оценки машинного интеллекта. Он показывает, насколько искусственная система продвинулась в обучении общению и удастся ли ей выдать себя за человека.

Самая ранняя успешная программа искусственного интеллекта была создана Кристофером Стрейчи в 1951 году. А уже в 1952 году она играла в шашки с человеком и удивляла зрителей своими способностями предсказывать ходы. По этому поводу в 1953 году Тьюринг опубликовал статью о шахматном программировании.

какое определение наиболее полно отражает понятие искусственный интеллект

В 1965 году специалист Массачусетского технологического университета Джозеф Вайценбаум разработал программу «Элиза», которая ныне считается прообразом современной Siri. В 1973 году была изобретена «Стэндфордская тележка», первый беспилотный автомобиль, контролируемый компьютером. К концу 1970-х интерес к ИИ начал спадать.

Новое развитие искусственный интеллект получил в середине 1990-х. Самый известный пример – суперкомпьютер IBM Deep Blue, который в 1997 году обыграл в шахматы чемпиона мира Гарри Каспарова. Сегодня подобные сети развиваются очень быстро за счет цифровизации информации, увеличения ее оборота и объема. Машины довольно быстро анализируют информацию и обучаются, впоследствии они действительно приобретают способности, ранее считавшиеся чисто человеческой прерогативой.

Отличие ИИ от нейросетей и машинного обучения

Нейросети представляют собой математическую модель, компьютерный алгоритм, работа которого основана на множестве искусственных нейронов. Суть этой системы в том, что ее не нужно заранее программировать. Она моделирует работу нейронов человеческого мозга, проводит элементарные вычисления и обучается на основании предыдущего опыта, но это не соотносимо с ИИ.

Искусственный интеллект, как мы помним, является свойством сложных систем выполнять задачи, обычно свойственные человеку. К ИИ часто относят узкоспециализированные компьютерные программы, также различные научно-технологические методы и решения. ИИ в своей работе имитирует человеческий мозг, при этом основывается на прочих логических и математических алгоритмах или инструментах, в том числе нейронных сетях.

Под машинным обучением понимают использование различных технологий для самообучающихся программ. Соответственно, это одно из многочисленных направлений ИИ. Системы, основанные на машинном обучении, получают базовые данные, анализируют их, затем на основе полученных выводов находят закономерности в сложных задачах со множеством параметров и дают точные ответы. Один из наиболее распространенных вариантов организации машинного обучения – применение нейросетей.

Если сравнивать с человеком, то ИИ подобен головному мозгу, машинное обучение – это один из многочисленных способов обработки поступающих данных и решения назревающих задач, а нейросети соответствуют объединению более мелких, базовых элементов мозга – нейронов.

Разница между искусственным и естественным интеллектом

Сравнивать искусственный и естественный интеллект можно лишь по некоторым общим параметрам. Например, человеческий мозг и компьютер работают по примерно схожему принципу, включающему четыре этапа – кодирование, хранение данных, анализ и предоставление результатов. И естественный, и искусственный разум склонны к самообучению, они решают те или иные задачи и проблемы, используя специальные алгоритмы.

Помимо общих умственных способностей к рассуждению, обучению и решению проблем, человеческое мышление также имеет эмоциональную окраску и сильно зависит от влияния социума. Искусственный интеллект не имеет никакого эмоционального характера и не ориентирован социально.

Если говорить об IQ – большинство ученых склонны считать, что сей параметр оценки никак не связан с искусственным интеллектом. С одной стороны, это действительно так, ведь стандартные IQ-тесты направлены на измерение «качества» человеческого мышления и связаны с развитием интеллекта на разных возрастных этапах.

С другой стороны, для ИИ создан собственный «IQ-тест», названный в честь Тьюринга. Он помогает определить, насколько хорошо машина обучилась и способна ли она уподобиться в общении человеку. Это своего рода планка для ИИ, установленная людьми. А ведь все больше ученых склоняется к тому, что скоро компьютеры обгонят человечество по всем параметрам… Развитие технологий идет по непредсказуемому сценарию, и вполне допустимо, что так и будет.

Применение ИИ в современной жизни

какое определение наиболее полно отражает понятие искусственный интеллект

В зависимости от области и обширности сферы применения, выделяют два вида ИИ – Weak AI, называемый еще «слабым», и Strong AI, «сильный». В первом случае перед системой ставят узкоспециализированные задачи – диагностика в медицине, управление роботами, работа на базе электронных торговых платформ. Во втором же подразумевается решение глобальных задач.

Так, одна из наиболее популярных сфер применения ИИ – это Big Data в коммерции. Крупные торговые площадки используют подобные технологии для исследования потребительского поведения. Компания «Яндекс» вообще создает с их помощью музыку. В некоторые мобильные приложения встроены голосовые помощники вроде Siri, Алисы или Cortana. Они упрощают процесс навигации и совершения покупок в сервисе. И не стоит забывать про программы с нейросетями, обрабатывающими фото и видео.

ИИ также внедряют в производственные процессы для фиксации действий работников. Не обошлось и без внедрения новых технологических решений в транспортной сфере. Так, искусственный интеллект мониторит состояние на дорогах, фиксирует пробки, обнаруживает разные объекты в неположенных местах. А про автономное (беспилотное) вождение и так постоянно говорят…

Люксовые бренды внедряют ИИ в свои системы для анализа потребностей клиентов. Стремительно развивается использование подобных систем в системах здравоохранения, в основном при диагностике заболеваний, разработке лекарств, создании медицинских страховок, проведении клинических исследований и так далее.

Перечислить разом все области, в которых задействован искусственный интеллект, практически нереально. На данный момент он затрагивает все больше самых разных сфер. И причин на то немало – та же автоматизация производственных процессов, стремительный рост информационного оборота и инвестиций в эту сферу, даже социальное давление.

Влияние на различные области

какое определение наиболее полно отражает понятие искусственный интеллект

ИИ все больше проникает в экономическую сферу, и, по некоторым прогнозам, это позволит увеличить объем глобального рынка на 15,7 трлн долларов к 2030 году. Лидирующую позицию в освоении сей технологии занимают США и Китай, однако некоторые развитые страны вроде Канады, Сингапура, Германии и Японии не отстают.

Искусственный интеллект может оказать существенное влияние на рынок труда. Это может привести к массовому увольнению рабочего персонала из-за автоматизации большинства процессов. Ну и росту востребованности разработчиков, конечно.

Перспективы развития искусственного интеллекта

Современные компьютеры приобретают все больше знаний и «умений». Скептики же утверждают, что все возможности ИИ – не более чем компьютерная программа, а не пример самообучения. Однако это не мешает технологии широко распространяться в самых различных сферах и открывать невиданные ранее потенциалы для развития. Со временем компьютеры будут становиться все мощнее, а ИИ еще быстрее совершенствоваться в своем развитии.

Заключение

Не так давно, казалось бы, ученые ввели понятие «искусственный интеллект», а чуть больше полвека спустя технология уже находит широкий спрос в самых различных сферах. Сейчас искусственный разум, можно сказать, находится в шаговой доступности для любого человека – компьютер и ноутбук, смартфон и электронные часы, даже многие простейшие приложения работают именно с его помощью. ИИ в самых разных своих проявлениях проник во многие сферы человеческой жизни и прочно обосновался в них.

Возможно, страхи ученых вполне обоснованы? Как знать 🙂

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *