какое напряжение в контактном рельсе метро
Контактный рельс в метро: как это устроено и какое там напряжение?
Опубликовано 12.04.2021 · Обновлено 03.11.2021
В большинстве метрополитенов мира для передачи электрической энергии от подстанции к подвижному составу применяется не привычная для железной дороги воздушная контактная сеть, а вполне жесткий контактный рельс, оправдывающий свое название в полной мере.
Назначение и устройство контактного рельса
Контактный рельс — это жесткий токоведущий элемент, предназначенный для передачи электроэнергии к токоприемнику подвижного состава, за счет скользящего контакта.
На фото оранжевым окрашен токоприемник, скользящий по контактному рельсу снизу
Под жестким токоведущим элементом как правило понимается дополнительный рельс, однако это может быть все что угодно, главное чтобы этот элемент имел гладкую поверхность для возможности скольжения по нему токоприемника, и был жестким для возможности его крепления без дополнительных удерживающих приспособлений. Кстати, варианты крепления тоже могут быть различны: как по бокам от основного пути, так и в середине пути. Помимо крепления есть разные варианты токосъема: когда скольжение токоприемника осуществляется сверху, снизу или сбоку.
Напряжение электрического тока в контактной сети метрополитенов России — 825 Вольт выпрямленного постоянного тока, рабочим напряжением для подвижного состава является диапазон от 750 до 925 Вольт
В метрополитенах России контактный рельс расположен по бокам от основного пути для токосъема снизу, он с жестко крепится к шпалам железнодорожного пути посредством специального кронштейна, на вершине которого устанавливается изолятор, непосредственно удерживающий его. Таким образом ось контактного рельса оказывается параллельной оси пути, и если говорить о цифрах: расстояние между этой осью и ближайшим рельсом составляет 690 мм, а высота нижней (токоведущей) стороны над головкой рельса пути составляет 160 мм. Эти показатели на протяжении всей длины остаются практически неизменными.
Схема крепления контактного рельса в метрополитенах России
Достоинства применения контактного рельса
Есть множество сценариев использования контактных рельс для питания подвижных составов, начиная от поездов метро и заканчивая городским трамваем. В каждом конкретном случае проявляются те или иные сложности, по этому о достоинствах и недостатках такого способа передачи электроэнергии мы будем говорить с позиции применения в отечественном метрополитене.
Главной сложностью перед применением в метро классической контактной сети, организация которой хорошо отработана на большой железной дороге, стала борьба буквально за каждый кубический сантиметр пространства в тоннеле. Здесь и проявилось главное достоинство контактного рельса — такая технология не требует много места и габариты тоннелей остаются минимальными, ведь он занимает свободное пространство, которое невозможно занять чем-то другим, и невозможно ликвидировать.
Контактный рельс в тоннеле метро в изоляционном кожухе
Так как такая технология электропередачи не предполагает, в отличие от провода, движущихся частей, а также состоит из значительно меньшего количества элементов, если опять же сравнивать с контактной сетью, а значит и общая надежность оборудования будет выше, соответственно обслуживание будет упрощено, а ремонт удешевлен. Сплошная выгода, и почему железнодорожники не перешли на контактный рельс?*
Следующий плюс вытекает из физических свойств материалов. В метро используются рельсы изготовленные из низкоуглеродистой стали, и хоть ее положительные электрические качества заметно отстают от таковых, как например у меди, но за счет большого сечения контактного рельса, доходящего до 6600 квадратных миллиметров, его электрическое сопротивление значительно ниже, чем в контактном проводе. Отсюда, в сумме, он обладает лучшими токопроводящими свойствами, а учитывая большую площадь пятна контакта с токоприемником, и также постоянство этого контакта, возникновение электрической дуги и искрения исключено, а значит подвижной состав будет получать стабильное электропитание.
Недостатки применения контактного рельса
Однако из достоинств вытекают и недостатки. Из-за того, что сталь в силу ферромагнитных свойств обладает выраженным скин-эффектом, она не пригодна для передачи переменного тока: из-за того, что движение заряженных частиц в переменном электрическом поле будет сгруппировано в поверхностном слое данного металла, полезное сечение проводника изменится в меньшую сторону, увеличивая и электрическое сопротивление.
В воздушной контактной сети все токоведущие части расположены на значительной высоте и не представляют никакой угрозы для окружающих, а также сами остаются в «безопасности» от погодных явлений, таких как сильный снегопад. Электробезопасность диктует множество ограничений, связанных с контактным рельсом, в основном правила сводятся к необходимости обеспечить отсутствие людей вблизи токоведущего рельса под напряжением, ну и изоляцию рельса.
На станциях метро при падении пассажира на пути, предусмотрен свой алгоритм «возвращения» его обратно после снятия напряжения, для подъема на станцию через контактный рельс используют специальную лестницу. Также необходимо обеспечить 100% исключение нахождения в тоннеле людей во время движения поездов, и в российских метро для этого на всех станциях установлены специальные устройства мониторинга. В данном случае опасность заключается в токоприемниках, которые расположены по обе стороны подвижного состава. Наличие контактного рельса с одной стороны пути в тоннеле может дать забежавшему зацеперу ложное ощущение безопасности на противоположной стороне. Мало того, что движущиеся токоприемники сами по себе крайне опасные элементы конструкции, для встречи с ними в узком тоннеле, так они еще и под напряжением, если хоть один из них, на любой стороне вагона, касается контактного рельса.
Так выглядит лестница для захода с путей на станцию в метро. Лестница имеет складную конструкцию
В общем конечно есть метрополитены, в которых контактный рельс не изолирован от внешнего мира совсем никак, а электробезопасность обеспечивается исключительно организационными мерами, но в России он должен иметь изоляционный кожух (короб), а это значительно удорожает конструкцию.
Устройство контактного рельса
Контактный рельс закреплен непосредственно в фарфоровом изоляторе с полиэтиленовой прокладкой, который в свою очередь присоединяется к головке удерживающего кронштейна. Изолирующий короб крепится непосредственно на головку кронштейна. Таким образом уже на данном уровне контактный рельс остается полностью электрически изолированным проводником. Для подачи на него напряжения применяют прямое подключение провода от соответствующего энергетического фидера.
Место подключения контактного рельса к фидеру (обратите внимание, что контактный рельс на данном фото не имеет защитного короба)
Удерживающий кронштейн надежно крепиться к шпале, а его высота зависит от высоты путевых рельс. Между кронштейнами выдерживают расстояние до 5,5 метров, и это расстояние не зависит от длины рельсовых плетей (кстати длина одной плети 12,5 метров).
Теперь видится лишь одна проблема — стирание контактного башмака (который прижимается токоприемником к контактному рельсу) о частые стыки. Но бархатный путь придумали не только для людей, и для токоприемников контактные рельсы сваривают в единые плети длиной до 100 метров, с обязательным наличием температурных стыков для возможности бездеформационного расширения и сжатие плети от изменений температуры. На сварной стык обязательно приваривают несколько токопроводящих накладок, для уменьшения электрического сопротивления.
Башмак токоприемника мотор-вагона метро
Для плавного присоединения и отсоединения башмака токоприемника к контактному рельсу применяются концевые отводы. Их конструкция довольно проста, в конце отвода его высота относительно головки путевого рельса начинает повышаться, пока поверхность контактного рельса не становиться выше высоты касания башмака.
Какое напряжение в контактном рельсе метро
Артерии метрополитена
Если бы мы к каждой главе давали подзаголовки, то тут написали бы: электроэнергия — жизненная сила метрополитена. При этом не было бы никакого преувеличения, поскольку метрополитен, его механизмы и устройства полностью электрифицированы. Все, начиная от миниатюрных электронных приборов до мощных электродвигателей поездов, эскалаторов, вентиляции и водоотливных насосов, нуждается в электроэнергии. Как бы ни совершенна была техника, без надежного питания электроэнергией она бессильна.
Пожалуй, в этом смысле устройства электроснабжения подобны кровеносным артериям, питающим метрополитен.
Уже на подходе к вестибюлю метро пассажир видит светящуюся красную букву М. Он входит в вестибюль и пользуется разменным автоматом. Спускается по лестнице, ступени которой в зимнее время подогреваются электронагревательными элементами, проходит через автоматический контрольный пункт, следящий с помощью различных реле за правильностью оплаты проезда, спускается по эскалатору, приводимому в движение электродвигателем.
И вот пассажир в ожидании поезда стоит на платформе. Вокруг светло, чисто, свежий воздух в любое время года, тепло и прохлада, создаваемые микроклиматом.
Электропоезд за минимальное время домчит пассажира до нужной ему станции, и он, вновь воспользовавшись эскалатором, поднимется на поверхность, кстати, его выход на улицу так же зафиксирует пропускной автомат…
И чтобы все это действовало — разменивало, опускало, везло, поднимало, пропускало,— требуется электроэнергия.
Мы напомнили только о тех устройствах и механизмах, которые, если так можно выразиться, зримо сопровождают пассажира, а сколько для него остается невидимым и просто неизвестным: приборы сигнализации, централизации блокировки, устройства автотелеуправления движением электропоездами, санитарно-техническая аппаратура и т. д. А большой комплекс механизмов для ремонта пути, сооружений. Длинный перечень того, где необходима электроэнергия в метро, можно было бы продолжать долго.
Все так называемые потребители электроэнергии составляют восемь основных групп.
1. Электропоезда. Самый крупный потребитель, почти 3/4 всей энергии идет на тягу поездов.
2. Освещение станций, тоннелей, наземных линий и служебных помещений.
3. Эскалаторное хозяйство.
4. Санитарно-технические устройства.
5. Устройства сигнализации, централизации, блокировки и связи.
6. Электродепо, заводы, мастерские, лаборатории.
7. Электрифицированный инструмент и механизмы для производства работ на станциях и в тоннеле.
8. Собственные нужды подстанций (отопление, освещение, вентиляция, агрегаты для зарядки аккумуляторных батарей).
Каждая из этих групп имеет свой «характер», предъявляет свои условия и требования к системе энергоснабжения.
Для питания электропоездов необходим постоянный (выпрямленный) ток напряжением 825 В. Система постоянного тока определяется теми положительными качествами, которыми обладают тяговые двигатели вагонов.
Из чего же складываются эти 825 В?
Номинальное напряжение на токоприемниках поезда должно быть 750 В, а средняя величина падения напряжения в элементах тяговой сети (кабели, контактный рельс, ходовые рельсы) принимается за 10 процентов, то есть равна 75 В.
Максимальное напряжение на контактном рельсе должно быть не выше 975 В, минимальное — не ниже 550. Тяговая нагрузка имеет непостоянную величину и носит ярко выраженный пиковый характер. Семивагонный состав в момент пуска потребляет ток примерно 5000 А, но по мере разгона величина его уменьшается, а при следовании «на выбеге» равна 0.
Большинство потребителей получают электроэнергию круглосуточно. Только поездам она подается во время движения. После окончания движения во время «ночного окна» контактный рельс обесточивается. И рано утром снова подается напряжение.
Станции, тоннели, наземные участки линий и служебные помещения освещаются светильниками, получающими в нормальном режиме переменный ток от трансформаторов понизительных или совмещенных тяговопонизительных подстанций.
В подземных сооружениях для освещения применяется напряжение 127 В, на наземных участках — 220. Чем объясняется разница? Дело в том, что при прекращении питания переменным током часть освещения станций и тоннелей должна автоматически переключаться на питание от аккумуляторных батарей напряжением 115-150 В.
Нагрузка от осветительных устройств в течение суток имеет примерно постоянную величину. В период «ночного окна» часть освещения вестибюлей и станций отключают, зато включается освещение в тоннелях.
Двигатели эскалаторов потребляют переменный ток напряжением 380/400 В. Характер нагрузки зависит от количества пассажиров и режима работы машин, в ночное время она нулевая.
От переменного тока напряжением 380 и 220 в работают санитарно-технические установки: вентиляция, отопление, водоотливные насосные устройства и др.
Что же касается устройств СЦБ и связи, то они в количественном отношении весьма незначительный потребитель. Но крайне ответственный. Такой потребитель ни при каких условиях не может допустить перерыва питания. И он постоянно получает его от специальных трансформаторов, установленных на тяговопонизительных и понизительных подстанциях, в виде переменного тока напряжением 400, 220 и 127 В.
Электродепо, заводы, лаборатории, мастерские питаются от понизительных подстанций переменным током напряжением 127, 220, 380 в и 825 в выпрямленным.
Электрифицированный инструмент и механизмы работают от трансформаторов совмещенных тяговопонизитель-ных и понизительных подстанций напряжением 127, 220, 380 в переменного тока.
Основные потребители электроэнергии — поезда, освещение, эскалаторы, водоотливные установки, устройства автоматики и телемеханики для движения поездов, связи, автоматические системы обнаружения и тушения пожара, противопожарные установки — по надежности электроснабжения относятся к электроприемникам 1-й категории. Они допускают минимальные по времени перерывы в энергоснабжении. Это происходит при необходимости автоматического ввода резервного питания (устройства освещения, СЦБ и связи) или в то время, которое необходимо электродиспетчеру для включения или переключений в устройствах питания, идущих от Мосэнерго.
И в самом деле, поезда могут на 5-6 секунд иметь перерыв электропитания, он никоим образом не отразится на движении.
А устройства освещения и СЦБ? Конечно же нет. Если вдруг такое случится, то не больше чем на десятые доли секунды.
Вот он, «характер» энергоснабжения метрополитена…
Управляют системой энергоснабжения квалифицированные специалисты — электродиспетчеры. Располагая средствами телемеханики, они контролируют работу системы, постоянно находясь в контакте с поездными бригадами, а также с диспетчерами эскалаторной и электромеханической служб. В электросистеме метрополитена в части надежности и бесперебойности предъявляются жесткие требования. Они диктуются самой спецификой деятельности подземной магистрали. А за счет чего эта надежность системы обеспечивается, какие условия оказываются решающими? Таких условий четыре.
1. Есть необходимые резервы во всех звеньях.
2. Имеются устройства автоматики, телемеханики и электрической защиты.
С помощью устройств автоматики поддерживается заданный режим. Аппаратура телемеханики позволяет одному человеку — диспетчеру — управлять электроснабжением целой линии. С помощью телеуправления он постоянно контролирует работу агрегатов и подстанций, получает информацию о нагрузках агрегатов, производит необходимые переключения на подстанциях и в тоннеле и т. д. Устройства электрической защиты в случае отклонения от нормального режима могут предотвратить аварийную ситуацию или локализовать ее.
3. Правильная организация эксплуатации всех устройств системы (осмотры, профилактические испытания, периодические плановые ревизии, различного вида ремонты и др.).
4. Профессиональные знания и добросовестное выполнение своих обязанностей каждым работником. По сути, в этом специфика метрополитена, где, как правило, бригады состоят из 2-3 человек, а многие работы проводятся единолично.
В этих условиях необходима строгая технологическая дисциплина и сознательное отношение к выполнению любого задания. Работники службы электроподстанций и сетей обеспечивают эти требования. Достаточно сказать, что по вине устройств электроснабжения крайне редко отмечаются сбои графика движения.
Небольшой исторический экскурс позволит нам поближе познакомиться с этой службой, почувствовать ее напряженный трудовой пульс.
Службе электроподстанций и сетей одной из первых на Московском метрополитене было присвоено высокое звание коллектива коммунистического труда. В 1935 году в службе насчитывалось 348 человек, а в 1985-м — более 1500 человек.
Незадолго до открытия метрополитена было организовано Управление службы. И в связи с тем, что в тот период электротехническое хозяйство было сравнительно невелико, в состав службы входили и эскалаторы, и сантехнические установки.
Первые несколько месяцев руководящие должности в управлении занимали в основном специалисты Метро-строя, Метропроекта и Могэса-Мосэнерго.
Во главе каждой тяговой подстанции стояли начальник и мастер. Понизительные подстанции были разбиты на три группы.
На всех тяговых и понизительных подстанциях устанавливалось круглосуточное дежурство, чтобы постоянно следить за работой оборудования. Не было автоматики и устройств телеуправления. Дежурили на подстанциях работники метрополитена и электротехнической промышленности. Специально подготовленных кадров еще не хватало. Опыт монтажников помогал работникам службы быстрее осваивать сложное оборудование и схемы подстанций.
Тогда же проводились различные испытания ртутных выпрямителей, быстродействующих выключателей и другой аппаратуры.
Первый период, который условно назван «освоением», продолжался около полутора лет и дал много нового и полезного коллективу службы. И большой вклад в это внесли Б. Г. Жданов, В. Г. Гурвич, А. С. Карасев, Г. А. Плетнев, О. А. Москвин, В. В. Харитонов, К. П. Николаев, М. Г. Харитонов и другие.
В начале 1937 года структура службы изменилась. Сан-технические установки отошли к сооруженцам. В Управлении службы были ликвидированы отделы тяговых и понизительных подстанций.
Инженерно-технический состав и рабочие-рационализаторы провели значительные мероприятия по повышению надежности работы всех элементов электрохозяйства метро. Впервые в СССР была разработана и внедрена защита кабелей постоянного тока напряжением 825 В, реконструированы аноды ртутных выпрямителей, что повысило их нагрузочные и перегрузочные способности.
Хотелось бы остановиться отдельно еще на одной серьезной работе.
Проектная мощность энергетического хозяйства предусматривала максимальный график движения поездов в 24 пары шестивагонными составами. Однако уже в 1938 году размеры движения достигли максимального проектного графика, пассажироперевозки — 300 миллионов человек в год.
Естественно, появилась нужда в дальнейшем росте графика. В связи с этим необходимо было провести расчеты максимальных и средних нагрузок выпрямительных агрегатов, а также испытания и расчеты по токам короткого замыкания в контактной сети и тока уставок быстродействующих выключателей 825 В. Одновременно были проведены реконструктивные работы. И уже в 1938 году ввели новый график — 34 пары поездов в час.
Параллельно шли испытания и делались расчеты с целью выяснения: можно ли увеличить количество вагонов в поезде до восьми?
С первых дней эксплуатации на повестку дня встал вопрос о создании новых и совершенствовании имеющихся средств автоматики и разработке устройств телемеханики. Впервые телемеханика на столичном метрополитене была опробована 21 мая 1939 года, а через год на автотелеуправлении впервые в Советском Союзе — без местного дежурного персонала — работали все тяговые подстанции Горьковской линии.
Великая Отечественная война временно прервала работы по телемеханизации электросистемы. Но они сразу же возобновились после войны. И к 1967 году вся система была полностью телемеханизирована.
Много профессионального умения, инженерной смекалки и творческой инициативы внесли в разрешение этой проблемы работники службы электроподстанций и сетей Е. А. Каминский (автор первой системы телемеханики, которая эксплуатируется до сих пор), В. М. Киеня, В. Ф. Мерзлов, М. В. Минаева, В. Г. Круть, Ф. А. Винокурский и другие.
Хотелось бы более детально объяснить читателям, почему столь важное значение придавали на метрополитене внедрению в систему электроснабжения автотелеуправления.
И тут, видимо, трудно обойтись без некоторых параллелей.
В наш век телемеханика прочно вошла в жизнь. Мы даже представить себе не можем бытовой холодильник без автоматического регулирования температуры. Нас не удивляет программное управление станками. И даже — космическая телемеханика. Все это воспринимается как само собой разумеющееся.
Но ведь все когда-то начиналось с нуля. И первые, самые примитивные по устройству и конструкции изделия всегда оказывались самыми сложными по затрате творческого труда. А что дает развитие и внедрение этих изделий, становилось ясным спустя годы, иногда и десятилетия.
Новое в технике возникает, развивается и входит в жизнь, когда оно необходимо. Именно так случилось с автотелеуправлением на метрополитене. Причем речь идет не об автоматике как таковой и не о телемеханике, а об их чрезвычайно строго и тщательно продуманном сочетании, которое и образует систему автотелеуправления.
При создании и внедрении автотелеуправления пришлось решить ряд технических, организационных и правовых вопросов.
Во-первых, предстояло найти необходимые технические решения.
Во-вторых, выработать систему технического и технологического обслуживания (виды и содержание осмотров, ревизий, профилактики, испытаний).
В-третьих, создать систему оперативного использования средств автотелеуправления (диспетчеризация, взаимодействие диспетчерского и ремонтного персонала, организация скорой технической помощи и Т. п.).
В-четвертых, подготовить кадры как технического, так и оперативного персонала значительно более квалифицированного, чем при местном управлении. На подстанциях нет местного дежурного персонала, но есть дежурный электродиспетчер, который в своей работе руководствуется телесигналами. А все оборудование систематически осматривают, тщательно регулируют, испытывают.
В-пятых, решить и узаконить ряд правовых положений, так как автотелеуправление (равно как и электрическая централизация стрелочных переводов) кардинально изменяет порядок оперативных действий, что непосредственно касается безопасности обслуживания. Так, на телеуправляемых подстанциях некому ночью «разбирать схему» для создания видимых разрывов в линиях контактной сети. Аналогично, при диспетчерской централизации, не может быть и речи о запирании приводов стрелочных переводов.
Следовательно, возникла необходимость не только найти другие полноценные средства, гарантирующие безопасность, но и узаконить их. Однако новые средства управления вводились на метрополитене впервые. Не было ни правил, ни инструкций, ни аналогов. Кроме того, на метрополитене существовало особо неблагоприятное условие: контактный рельс доступен для прикосновения, что сильно усложняет дело.
В таких условиях принятие решения об изменении правил эксплуатации требовало не только настойчивости, но и большой смелости. К чести бывших в то время начальника службы Е. Б. Френкеля, начальника цеха защиты и автоматики (ныне ДЗА) А. Г. Мельникова и главного электродиспетчера В. Г. Гурвича, они взяли на себя всю полноту ответственности. И теперь, когда со дня ввода в эксплуатацию первого устройства телеуправления прошло не одно десятилетие, у энергетиков метрополитена есть право сказать, что они не подвели этих смелых людей.
Времена недоверия к автоматике давно прошли. Сегодня запись в диспетчерском журнале 1939 года: «…на подстанции все нормально, за исключением того, что один из фидеров переведен на автоматику» — звучит как анекдот.
Слово «телемеханика» вошло в широкое употребление.
Автотелемеханизация увлекла многих. Особенно активными ее участниками были Ф. В. Васильев, Е. Е. Ганцева, Н. В. Мерцалов, О. А. Москвин, В. Ф. Мерзлов, В. Н. Мос-ковченко, В. Д. Островский, А. Ф. Пальтов, В. Г. Петров.
Первой в СССР автотелеуправляемой тяговой подстанцией была Т7 «Маяковская». Автотелеуправление на ней было внедрено 14 мая 1940 года, в канун 5-й годовщины Московского метрополитена. Летом 1940 года на новое управление перевели Т8 «Динамо», а осенью — Т9 «Аэропорт». Таким образом, все подстанции одной линии («Площадь Свердлова» — «Сокол») работали без дежурного персонала, и в их числе Т9, питавшая тупиковые фидера, не имеющие «подстраховки» со смежных подстанций.
Во время Великой Отечественной войны телемеханика была отключена. Вновь ее ввели в эксплуатацию в 1945 году, но на значительно более совершенной основе. Все работы по автотелеуправлению в дальнейшем мет