какое напряжение в двухфазной сети
Двухфазная система переменного тока
Чаще всего ток распределялся по четырем проводам, реже по трем, причем один из них имел больший диаметр (его нужно было рассчитать на 141% тока отдельных фаз).
Первый из этих генераторов имел два ротора, повернутых относительно друг друга на 90°, поэтому они больше походили на два соединенных однофазных генератора, настроенных для создания двухфазного переменного напряжения. Генераторы, установленные в 1895 году на Ниагарском водопаде, были двухфазными и были крупнейшими в свое время.
Упрощенная схема двухфазного генератора
Двухфазная система имела то преимущество, что позволяла работать асинхронным электродвигателям.
Вращающееся магнитное поле, которое создает двухфазный ток, обеспечивает ротор крутящим моментом, который способен вращать его из состояния покоя. Однофазная система не может этого сделать без использования пусковых конденсаторов. Конфигурация катушки двухфазного двигателя такая же, как и у однофазного двигателя с конденсаторным пуском.
Также было проще анализировать поведение системы с двумя полностью отдельными фазами. Фактически, так было до 1918 года, когда был изобретен метод симметричных составляющих, который позволил проектировать системы с несбалансированными нагрузками (в основном любая система, в которой по какой-либо причине невозможно сбалансировать нагрузки отдельных фаз, как правило, жилые).
Обмотка двухфазного электродвигателя около 1893 г.
Большинство шаговых двигателей также можно рассматривать как двухфазные двигатели.
Трехфазное распределение, по сравнению с двухфазным распределением, требует меньшего количества проводов при одинаковом напряжении и той же передаваемой мощности. Для этого требуется всего три провода, что значительно снижает затраты на установку системы.
В качестве источника двухфазного тока использовался специальный генератор генератор, который имел два набора катушек, повернутых друг относительно друга на 90°.
Обе системы, то есть двухфазные и трехфазные, могут быть подключены напрямую, используя два трансформатора в так называемом соединении Скотта, решение дешевле и эффективнее, чем использование вращающихся преобразователей.
В то время, когда переходил от двухфазной системы к трехфазной, необходимо было решить, как равномерно распределить нагрузку двухфазных машин на трехфазную систему, чтобы сбалансировать ее, т.к. отдельные фазы нельзя регулировать отдельно.
Кроме того, он может преобразовывать электроэнергию не только из трехфазной системы в двухфазную, но и наоборот, обеспечивая таким образом взаимосвязь между более крупными электрическими блоками и обмен энергией между ними.
Предполагая, что напряжение на трех- и двухфазной стороне должно быть одинаковым, на одном из них формируется отвод точно посередине, катушка делится 50:50 и ее концы подключаются к двум фазам, а другой имеет всего 86,6% намотки, соответственно там создается ответвление.
Этот второй трансформатор подключается к центру первого, а ответвление подключается к оставшейся фазе. Тогда на вторичных обмотках получается ток, смещенный на 90° относительно друг друга.
К сожалению, это соединение не способно сбалансировать несимметричную нагрузку отдельных фаз, дисбаланс двухфазной системы переносится на трехфазную и наоборот, в зависимости от того, какой источник подключен.
В настоящее время система почти везде в мире заменена более современной трехфазной системой, однако в некоторых частях Соединенных Штатов система все еще используется, например, в Филадельфии и Южном Джерси в США (где она находится в упадке). Причины, по которым эта система все еще работает, являются историческими.
Однофазная трехпроводная сеть для коммунального электроснабжения, которая особенно широко распространена в Северной Америке, иногда и неправильно называется двухфазной системой, хотя в базовой установке это однофазная система.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Виды подключений
Типы подключений нагревателей к источнику питания.
В настоящее время типы подключений различаются по количеству фаз: одна, две или три. Отсюда и названия типов подключений:
однофазное;
двухфазное;
трехфазное.
Однофазное подключение предусматривает самый простой способ подключить нагреватель к источнику питания: на один из двух проводов, идущих от сердечника нагревателя, подается фаза, на другой провод – нейтраль или, как принято говорить, «ноль» (рис. 1).
Рисунок 1. Однофазное подключение.
Однофазный тип подключения широко применяется в типичной электросети, где напряжение составляет 220 – 240 Вольт, и в других сетях, которые имеют такие значения напряжения: 12, 24, 36, 48, 60 и 110 Вольт.
На рисунке 2 показана схема подключения к однофазному источнику питания.
Рисунок 2. Схема однофазного подключения.
В силу того, что нагреватель не предполагает наличие собственной полярности, фаза может подаваться на любой из проводов. Данный факт относится к преимуществам использования такого типа подключения: простота и универсальность.
Рисунок 3. Двухфазное подключение.
Двухфазное подключение используется в энергосетях, напряжение которых варьируется в пределах 380 – 400 Вольт.
На рисунке 4 показана схема подключения к двухфазному источнику питания. Как было сказано раннее, визуальных и конструктивных изменений, по сравнению с однофазным типом, данный тип подключения не имеет.
Рисунок 4. Схема двухфазного подключения.
Преимуществом такого типа подключения является возможность получить больше мощности от нагревательного элемента. Повышение мощности оказывает негативное влияние на надежность и ресурс нагревателя – это является единственным недостатком использования двухфазного подключения
Трехфазное подключение может быть реализовано двумя способами. На рисунке 5 показаны две схемы исполнения трехфазного подключения: звезда и треугольник.
Рисунок 5. Схемы исполнения трехфазного подключения.
Разница между этими схемами заключается только лишь в отличительном напряжении питания, которое будет подаваться нагревателю: либо фазные 220 вольт, либо линейные 380 вольт к источнику питания. Фазы будут иметь одинаковый ток, какой бы не была выбрана схема.
Трехфазное подключение по схеме звезда показано на рисунке 6.
Рисунок 6. Трехфазное подключение по схеме звезда.
Подключение по схеме звезда предусматривает наличие нулевого провода, который для визуальной разницы имеет синий цвет. Существует возможность не использовать нулевой провод, если его наличие в схеме не было предусмотрено клиентом. Однако, мы настоятельно не рекомендуем использовать подключение по схеме звезда без использования нулевого контакта.
На рисунке 7 представлен принцип подключения по схеме звезда.
Рисунок 7. Принцип подключения по схеме звезда.
Если нагреватель имеет вместо проводов для подключения контакты, то производитель отмечает нулевые контакты синим цветом так, как это показано на рисунке 8, 9.
Рисунок 8. Подключение по схеме звезда без проводов в нагревателе.
Рисунок 9. Подключение сухого ТЭНа по схеме звезда.
Трехфазное подключение по схеме треугольник показано на рисунке 10.
Рисунок 10. Трехфазное подключение по схеме треугольник.
Подключение по схеме треугольник используется при работе с линейным напряжением порядка 380 вольт. Поэтому каждый участок цепи нагревателя получает две фазы, чем отличается от подключения по схеме звезда, где на каждый участок цепи приходится лишь одна фаза.
Треугольное подключение, которое принято считать классическим, имеет 3 провода, на которые подается три фазы. Наличие нулевого провода данная схема подключения не предусматривает. На рисунке 11 и 12 показаны принципы подключения нагревателя и сухого ТЭНа по схеме треугольник.
Рисунок 11. Принцип подключения по схеме треугольник.
Рисунок 12. Подключение сухого ТЭНа по схеме треугольник.
Преимуществом такой схемы подключения является более высокие значения мощности, по сравнению со схемой звезда, а также более удобное подключение без использования лишних проводов. Недостатком такой схемы является лишь недостаток использования высокого напряжения, которое снижет ресурс нагревателя.
Заземление предназначено для предотвращения несчастных случаев на производстве, а зануление предназначено для выравнивания потенциалов в цепи – не стоит данные понятия считать синонимами.
Оборудование должно быть изначально заземлено, что требует техника безопасности, тем ниже риск несчастного случая (рис. 13). Исключениями являются нагреватели без металлического корпуса, которые не нуждаются в заземлении.
Рисунок 13. Влияние заземления на безопасность человека.
Напряжение между двумя фазами – советы электрика
Напряжение между двумя фазами
В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.
Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.
Действующее значение и амплитудное значение напряжения
Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений. Что это значит?
Это значит, что на сомом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.
Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.
Фазное сетевой напряжение
Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.
Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.
В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой.
Линейное напряжение трехфазной сети
Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.
Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт.
Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732.
Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.
Откуда взялся корень из 3
В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов. Метод основан на положении, что при вращении некоторого вектора U вокруг начала координат с постоянной угловой скоростью ω, его проекция на ось Y пропорциональна синусу ωt, то есть синусу угла ω между вектором U и осью Х, который в каждый момент времени определен.
График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида U(ωt) отражает динамику напряжения.
Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.
Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.
Статьи и схемы
Полезное для электрика
Сразу расскажу для чего необходимо самостоятельно в своей квартире или доме измерять в Вольтах напряжение.
Во-первых. для того что бы убедится в исправности электрической розетки, выключателя, светильника- Мы проверяем на их контактах наличие напряжения, которое должно соответствовать 220 Вольтам с допустимыми отклонениями для домашней электросети.
Во-вторых.
если напряжение в электропроводки будет значительно выше допустимых пределов, то как показала практика- это является очень часто причиной поломки электроники, бытовой техники и перегорания ламп в светильниках.
Причем не только превышение или перенапряжение в электросети опасно, но так же, но конечно в меньшей степени- опасно снижение ниже допустимой величины напряжения, в таких условиях, как правило ломается компрессор холодильника.
Допустимые значения напряжения, причины скачков
Согласно требованиям ГОСТа 13109, значение напряжения в домашней электрической сети должно быть в пределах 220В ±10% ( от 198 Вольт до 242 Вольт).
Если в вашем доме или квартире стали тускло гореть, моргать лампочки или, вообще они часто перегорают, не стабильно работает бытовая техника и электроника- рекомендую сразу по максимуму все выключить и проверить значение напряжения в электропроводке.
Если Вы зарегистрировали скачки напряжения, то чаще всего в периодическом снижении ниже допустимого уровня виноваты соседи по дому или улице. Так как к линии, идущей от подстанции не только Вы подключены, но и ваши соседи.
Это обычно характерно для частных или индивидуальных домов, в случаях, если другой человек, а тем более если несколько, на той же линии включат мощный потребитель, который периодически меняет уровень энергопотребления, например сварочный аппарат, станок и т. д.
Второй вариант касается всех, но чаще встречается в многоквартирных домах. Если в щите на 380 Вольт отгорит ноль, все квартиры начинают получать электроэнергию в аварийном режиме. Причем, в зависимости от нагрузки на каждую фазу, в одной квартире будет перенапряжение в другой наоборот- падение.
Почему это происходит? Потому что на этажный щиток приходит 3 фазы + ноль = заземляющий проводник. Каждаяквартира подключается к одной фазе, нулю и заземлению (для 3 проводных линий).
Квартиры сидят на разных фазах, потому что необходимо обеспечить равномерную нагрузку на все 3 фазы для нормальной работы всей электросети до подстанции. Так вот напряжение между фазами 380 Вольт, а между фазой и нулем (заземлением )- 220 Вольт.
Получается что все нулевые проводники сведены в одну точку (смотрите справа схему), и при пропадании (обрыве) нулевого проводника- все квартиры начинают запитываться без него только фазами, которые оказываются подключенными в звезду.
Что такое линейное и фазное напряжение
Знание этих понятий очень важно для работы в электрощитах и с электротехническими устройствами, работающими на 380 Вольт. Если у Вас обычная квартира и Вы не собираетесь работать в электрощитах, то этот пункт можете пропустить т. к. у Вас в квартире только фазное напряжение 220 вольт.
В большинстве частных или индивидуальных домов так же на электрощит или счетчик приходит только 2 (фаза и ноль )или 3 (+заземление) провода, что означает присутствие в вашей квартире или доме напряжения 220 Вольт. Но если приходит 4 или 5 проводов то, это означает что Ваш дом (бывает и в гаражах, и особенно в офисах) подключен к сети 380 Вольт.
Напряжение между любыми двумя из трех фазами линии электропитания называется линейным, а между любой фазой и нулем- фазным.
В нашей стране линейное напряжение у электропотребителей равно 380 Вольтам (измеряется между фазами), а фазное- 220 Вольт. Смотрите на рисунке слева.
Бывают и другие значения в электросистеме нашей страны, но фазное всегда меньше линейного на корень квадратный из трех.
Как проверить напряжение
Для измерения напряжения электрического тока служат следующие измерительные приборы:
Внимание, при измерении источников постоянного тока (какие к ним относят ) необходимо соблюдать полярность.
Как измерить напряжение в розетке, в патроне лампы и т. п.:
Будьте осторожны- работа проводится под напряжением- не касайтесь руками не изолированных контактов и проводов, находящихся под напряжением.
Как измерить напряжение аккумулятора, батарейки и блока питания
Все источники постоянного тока необходимо измерять с соблюдением полярности- черный щуп ставим на минусовуюклемму, а красный — на плюсовую клемму.
А так все аналогично проводятся как и при проведении вышеописанных измерений в розетке, но только тестер или мультиметр необходимо переключить в режим измерения постоянного тока с пределом выше указанного на АКБ. батарейке или блоке питания.
Почему на одной фазе 220 а трех фазах 380 вольт?
3-фазное электрическое напряжение, которое на картинке ниже обозначено через R — S — T, при измерении с помощью вольтметра покажет 380 вольт. Но, если каждая фаза показывает 220 вольт, почему же так происходит?
Все очень просто. 380 вольт, 3 фазы, R — S — T образуют фазовые углы по 120 градусов каждый, см. картинку:
Любой из этих углов выглядит как треугольник
Таким образом получается, что напряжение 3 фаз — 380 вольт, в то время как одной фазы — 220.
Заморочили человеку голову какими-то треугольниками, градусами и чертежами. Нет в токе никаких геометрических фигур, это АБСТРАКЦИЯ.
А разница такая между фазами происходит из-за того, что между подачами напряжения в каждой из трёх фаз есть разница во времени на треть цикла.
К примеру, для упрощения, представим что частота нашей сети равна 1 Герцу (= 1 оборот генератора в секунду).
После запуска трёхфазного генератора, в первой фазе максимум толчка напряжения произойдёт в 0-й миллисекунде, во второй фазе в 333-й миллисекунде, в третьей фазе в 666-й.
Потом начинается новый цикл, в первой фазе толчок нарастает к 1000-й, во второй в 1333-й, в третьей в 1666-й и так далее.
Так вот, пока в первой фазе ток возбудил свой максимум в 220 к наступившей 2000-й секунде, вторая фаза ещё этого сделать не успела и возбуждена лишь на минус 160, соответственно разница между ними 220-(-160)=380.
Если бы ток шёл в полной противофазе, тогда бы толчки были бы полностью противоположны и были бы равны 220-(-220)=440.
Ну, а почему между фазой и нулём разница в 220 и так понятно, потому что в фазе напряжение 220, а в нуле ноль: 220-0=220
Разница между напряжениями представленная в виде графика:
Анимированное движение тока в трёхфазной сети для наглядности:
Как мы от сюда видим, когда в одном из проводов ток уже движется во всю, в другом проводе ток ещё не полностью разогнался что бы от него “убегать”, а в третьем он уже перестал разгоняться.
Трёхфазная сеть — это провод с нулевым потенциалом и три фазных провода с потенциалами 220*sqrt(2)*cos(2*pi*50t), 220*sqrt(2)*cos(2*pi*50t + 2*pi/3) и 220*sqrt(2)*cos(2*pi*50t — 2*pi/3), где sqrt — это квадратный корень.
Если взять два любых фазных провода, то между ними будет разность потенциалов 220*sqrt(2)*( cos(2*pi*50t) + cos(2*pi*50t + 2*pi/3) ). Вспоминаем школьную тригонометрию, получаем 220*sqrt(3)*sqrt(2)*cos(. = 381*sqrt(2)*cos(.
Таким образом, при действующем значении переменного напряжения между нулём и фазой 220 В между двумя любыми фазами наличествует переменное напряжение 381 (
в избранное ссылка отблагодарить
Одну фазу что бы получить 220 вольт нужно замерить между рабочим нулевым проводником и фазой, а для того что бы получить 380 вольт нужно замерять между двумя фазными проводами. Каждая из трех фаз на ноль даст 220 вольт.
Питание поданное по трем фазам называется так из-за “наложения” векторов находящихся относительно друг друга на 120 градусов, в середине находится нулевой проводник получаемый на подстанции, а на подстанцию линией ЛЭП приходит всегда только фазы.
в избранное ссылка отблагодарить
380 — это 220 умножить на корень из 3. Ровно так же, как 127 (помните, когда-то у нас было именно такое напряжение?) — это 220 делить на корень из 3.
Штука в том, что если нарисовать соединение трёх фаз “звездой”, с нулевым проводом, то получится равносторонний треугольник, нулевой провод при этом соответствует центру симметрии этого треугольника, фазное напряжение (220) — расстоянию от этого центра до вершины, а сторона — межфазному напряжению. В расностороннем треугольнике сторона аккурат в корень из 3 больше расстояния от центра до вершины.
в избранное ссылка отблагодарить
Наконец то я это разгадал))) Амплитудное значение напряжение 1 фазы 310В (Эффективное напряжение 220В), амплитудная разница между двумя фазами 540В, а эффективное как раз и будет 380В, это 540в/(корень из 2).
Корень из 2 это усреднение из чистой синусоиды. Частота останется такая же 50 Гц.
В различной технике на выходе может и не быть синусоиды и там будут другие как амплитудные значения, так и тип сигнала на выходе, но что бы эффективное напряжение было 22В.
в избранное ссылка отблагодарить
Источники: http://electricalschool.info/main/osnovy/1865-linejjnoe-i-faznoe-naprjazhenie.html, http://jelektro.ru/elektricheskie-terminy/kak_izmerit_naprjazhenie.html, http://www.bolshoyvopros.ru/questions/852361-pochemu-na-odnoj-faze-220-a-treh-fazah-380-volt.html
Перекос фаз
Главная > Теория > Перекос фаз
Наиболее распространенной системой передачи электроэнергии является трехфазная, образованная тремя переменными напряжениями, различающимися по фазе на 120°. Несбалансированность напряжений влияет на качество электроэнергии.
Перекос напряжений на приборе
Что называется перекосом фаз
Чтобы понять, что такое перекос фаз, нужно обратиться к построению векторов напряжений трехфазной системы.
Вектора линейных напряжений образуют равнобедренный треугольник, а фазные напряжения, выходящие из нулевой точки, напоминают симметричную звезду.
Все три фазных напряжения должны быть равны по величине, а углы между ними составлять 120°. Отклонения от этого состояния представляют собой перекос фаз в трехфазной сети.
В схемах трехфазного тока, соединенных по типу «Y», присутствует N-проводник, с помощью которого относительно балансируются показатели напряжения. Когда происходит нарушение его целостности, N-проводником становится один из фазных проводов. Напряжение этой фазы возрастает до 0,4 кВ, что вызывает выход из строя электроприборов, подключенных к ней.
Графическое представление перекоса фаз
Напряжение обратной последовательности появляется при несимметрии фаз трехфазного питания, например, у двигателя или трансформатора. Величины и углы этого напряжения не совпадают с исходным напряжением системы. Степень асимметрии у двигателя зависит от его типа, размера и нагрузки.
Чтобы обнаружить асимметрию в системе, нужно измерить и сравнить друг с другом все три однофазные напряжения (между N-проводником и фазами).
Для расчета дисбаланса напряжений применяют следующую формулу:
Низшее напряжение / Высшее напряжение х 100%.
ПУЭ и ГОСТы устанавливают нормы допустимого перекоса фаз, исходя из показателей токов и напряжений, которые не должны превышаться:
От чего зависит симметрия напряжений
Симметрия напряжения системы между распредсетями и потребителями электроэнергии зависит от:
Напряжения на выходных контактах генераторов, как правило, симметричны из-за конструктивных особенностей и эксплуатационных характеристик синхронных машин, применяемых для выработки электроэнергии на электрических станциях. В случаях задействования асинхронных агрегатов, например, в ветряных установках, также получается симметричное трехфазное напряжение.
В локальных сетях генерации и распределения энергии, созданных со стороны потребителя, могут наблюдаться отличающиеся процессы. Многие из этих небольших блоков, например, фотоэлектрические элементы, подключенные к низковольтной сети силовой электроникой, имеют относительно высокий импеданс, что вызывает усиливающийся дисбаланс напряжения.
Сопротивление части энергосистемы неодинаково для отдельных фаз. Геометрическое расположение линий с асимметрией относительно земли вызывает различия и в их электрических параметрах. В целом, эти отклонения очень малы и могут быть незначительными при использовании превентивных мер.
Асимметрия на стороне нагрузки
Наиболее распространенными являются случаи перекоса фаз на стороне нагрузки. Приемниками, вызывающими асимметрию в сети, являются:
Асимметрия нагрузок по фазам
Важно! Неисправность системы также является причиной перекоса фаз. Распространенными случаями являются замыкания на землю, неисправности проводов. Такие дефекты вызывают падения напряжения в одной-двух фазах, что может способствовать перенапряжению в других фазах.
Последствия перекоса фаз:
Защитные методы
Существует несколько способов защиты низковольтных потребительских сетей от перекоса фазных напряжений. Первым способом является расчет нагрузочных токов и конструктивное планирование их с целью обеспечения равномерности распределения мощностей.
Нагрузки со стороны низкого напряжения, такие как бытовые электроприборы или осветительные сети, обычно однофазные, что затрудняет гарантию симметрии.
При планировании электрической сети, содержащей такие типы электроприемников, отдельные схемы должны быть равномерно распределены между тремя фазами, например, одна фаза на этаж.
Мерой по защите от перекоса фаз может служить и изменение рабочих параметров нагрузок в существующих сетях.
Важно! Несмотря на распределение, баланс нагрузок в центральном трансформаторе варьируется из-за изменения статистических циклов работы оборудования.
Другие защитные методы:
Реле контроля напряжения
Стабилизатор
Бытовое применение стабилизаторов предназначено для обеспечения неизменных показателей напряжения одной питающей фазы. Но они не влияют на перекос фаз в трехфазной сети. В промышленности применяют трехфазные устройства.
Основная функция аппарата – обеспечить выходное напряжение, питающее подсоединенные к нему устройства. Большинство стабилизаторов имеет электронные фильтры, целью которых является подавление шума и пикового напряжения. Стабилизатор защищает как от пониженного напряжения, так и от перенапряжения.
Симметрирующий трансформатор
Эти трехфазные устройства подключаются для питания потребительских электросетей и обладают рядом полезных функций:
Симметрирующие трансформаторы возможно использовать, как для питания трехфазной нагрузки, так и для создания однофазных схемных конфигураций. В случае наличия трехфазной системы без нейтрального проводника устройство преобразует ее в четырехпроводную систему с N-проводом.
Альтернативные способы устранения фазных перекосов – использование конденсаторных батарей с треугольным соединением, включение специальных трансформаторов с дополнительной нагрузкой в виде конденсатора и индуктивности и другие.
Видео
Подключение электричества: три фазы или одна?
Подключение электричества: три фазы или одна?
Любой объект, будь то коттедж, дача или загородный дом не может обойтись без подключения электричества. Не освоенному дачному участку, конечно, электричество «до фени», но как только принято решение о строительстве загородного дома проблема подключения электричества становится насущной.
Перед тем, как обратиться за разрешением на подключение электричества к загородному дому, следует определиться с необходимой мощностью и нюансами ее распределения между имеющимися или перспективными источниками потребления.
Владелец загородного дома вынужден «чесать репу» и задумываться о том, как подключить электричество посредством трех фаз или одной?
Потребляемая мощность электричества в жилых домах непрерывно растет. Если сравнить современные бытовые электроприборы с электроприборами средины прошлого века, то без вооруженного взгляда можно прийти к выводу, что потребляемая мощность электричества выросло в несколько раз.
Причем из года в год наблюдается тенденция постоянного увеличения потребляемой мощности электричества на душу населения.
Нормальное функционирование и жизнеобеспечение загородного дома не мыслится без таких потребителей электроэнергии, как электронасосов, электрических котлов, сварочных аппаратов, электродвигателей, ТЭНов различного назначения и др. силовых агрегатов. Поэтому в загородных домах все чаще стали подключать три фазы электричества, отказываясь от традиционной однофазной электросети.
В чем же преимущество трехфазной электросети от однофазной?
Многие владельцы загородных домов считают, что трехфазная электросеть допускает потреблять больше мощности, т.е. подключать больше потребителей. Однако это предположение не в полной мере соответствует действительности.
В инструкции ФАС указано, что максимально разрешенная мощность для загородного дома составляет 15 кВт без привязки к трехфазной или однофазной электросети. Конкретная потребляемая мощность для того или иного загородного дома указывается отдельно в технических условиях на подключение электричества.
Как правило, потребляемая мощность определяется возможностями трансформаторной подстанции (ТП) электросети и предполагаемым числом точек подключения электричества.
В этом случае соответствующие органы могут установить единую потребляемую мощность, например, те же 5 кВт, как для трехфазной электросети, так и для однофазной. Таким образом, в потребляемой мощности здесь выигрыш практически отсутствует.
В то же время не следует забывать, что при одинаковой потребляемой мощности для ввода трехфазной электросети в загородный дом можно использовать силовой кабель с жилами меньшей площади сечения.
Причина кроется в том, что потребляемая мощность, а, следовательно, и ток распределяются по трем фазам. Тогда в меньшей степени нагружается каждый фазный провод и номинал вводного автоматического выключателя в трехфазной электросети, будет тоже соответственно меньшим.
Вместе с тем, возрастает в два раза число жил вводного силового кабеля: с двух до четырех, вместо одно(двух) полюсного вводного автоматического выключателя потребуется трех(четырех) полюсный, а для учета электроэнергии – трехфазный электросчетчик.
Вследствие этого увеличиваются габариты электрощитка (ЩРН) и соответственно стоимость материалов и комплектующих узлов.
В дополнение ко всему следует отметить, что, как правило, все наиболее распространенные бытовые потребители электроэнергии рассчитаны для работы в однофазной электросети переменного тока.
Однако недостатки трехфазной электросети меркнут перед ее преимуществами. Для любого владельца загородного дома «фора» трехфазной электросети проявляется с первых же минут. С одной стороны, известно, что асинхронные электродвигатели в трехфазной электросети работают с лучшими энергетическими и механическими параметрами.
не вызывают «перекоса фаз», так как нагрузка таких потребителей электроэнергии равномерно распределяется между тремя фазами электросети.
Проблема «перекоса фаз» довольно-таки щекотливая, поэтому есть смысл рассмотреть ее более детально.
Перекос фаз проявляется в трехфазных четырех(пяти)- проводных электросетях с глухозаземленной нейтралью и напряжением до 1 000 В.
Как правило, низковольтная трехфазная электросеть напряжением 400 В (0,4 кВ) содержит источники электроэнергии, обмотки которых соединены «звездой» с выведенным нулем.
Идеальную модель, отображающую взаимосвязь и взаимное расположение фазных и линейных напряжений можно изобразить в виде равностороннего треугольника с вершинами «А», «B», «С» и центром «0».
Разности потенциалов между точками — АВ, ВС и CA являются линейными напряжениями (380 В), а разности потенциалов между точками — 0A, 0B и 0С являются фазными напряжениями (220 В). В идеальном случае фазные напряжения равны между собой U 0A = U 0B = U 0С и сдвинуты друг относительно друга на угол 120°, т. е.
L A0B = L B0C= L C0A=120°. При симметричной нагрузке для соединения обмоток звездой справедливо такое соотношение между линейными и фазными токами и напряжениями:
а мощность трёхфазной сети равна:
Из формулы видно, что мощность трехфазной электросети сети отличается от мощности однофазной не в три раза, как вначале предполагалось, а всего лишь примерно в 1, 73 раза.
Представленная выше на рисунке модель электросети является идеальной и перекос фазных напряжений в ней отсутствует.
Но по той причине, что к трансформаторной подстанции электросети подключается множество потребителей электроэнергии, в том числе и однофазных, то в каждый случайный момент времени можно ожидать, что нагрузки в разных фазах будут заметно отличаться.
Причем если даже однофазные нагрузки по величине одинаковы, то их подключение к электросети или отключение не может происходить синхронно.
Возникает ситуация, когда Z A > Z B > Z C ≠ 0, где «Z» – это полное сопротивление нагрузки, и, соответственно, «Z A» — это полное сопротивление нагрузки на фазе А, «Z B» — это полное сопротивление нагрузки на фазе B, «Z C» — это полное сопротивление нагрузки на фазе C. Если взглянуть на приведенный ниже равносторонний треугольник, то графически это будет выглядеть следующим образом: точка 0 в центре треугольника, из которой исходят векторы идеальных фазных напряжений величиной 220 В: E 0A, E 0B и E 0С — смещается относительно центра треугольника.
Щелкните по картинке и наглядно убедитесь к чему приводит перекос фаз.
Пусть будет это точка 0′. Смещаются и сами векторы фазных напряжений на произвольный угол друг относительно друга. Смещенные векторы фазных напряжений E 0’A, E 0’B и E 0’С не равны между собой, т.е.
E 0’A ≠ E 0’B ≠ E 0’С. Таким образом, напряжения в каждой фазе никогда не будут иметь одинаковый сдвиг и значение.
Отсюда различие фазных нагрузок по величине и характеру создает условия для возникновения перекоса фазных напряжений.
При симметричной нагрузке в трёхфазной электросети подключение потребителя электроэнергии к линейному напряжению возможно даже при отсутствии нейтрального провода. Однако, при подключении потребителя электроэнергии к фазному напряжению, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно.
В случае обрыва или значительного увеличения его сопротивления (плохой контакт) также происходит так называемый «перекос фаз».
В конечном итоге подключенный потребитель электроэнергии, рассчитанный на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода).
Повышенное напряжение зачастую является причиной выхода из строя бытовой радиоэлектронной техники, а также может привести к пожару. Пониженное напряжение также не всегда благоприятно влияет на радиоэлектронную технику и может послужить причиной выхода ее из строя.
К этому больше всего подвержены электродвигатели холодильников. Поэтому дорогостоящие аппараты (электрические котлы, компьютеры, холодильники, стиральные машины, телевизоры и др.) следует подключать к электричеству в загородном доме через стабилизаторы напряжения.
Для этих целей в трехфазной электросети можно выделить даже отдельную фазу.
В однофазной электросети перекос фаз часто становится причиной того, что потребители электроэнергии, подключенные к «неудачной фазе», вынуждены мириться со слишком низким напряжением в электросети, что в большей степени касается проблемы подключения электричества к загородному дому.
Обладателей трехфазной электросети такие вопросы «колышут» меньше всего, поскольку у них есть возможность подключения (переключения) особо важных и капризных однофазных потребителей электроэнергии к той фазе, напряжение которой меньше всего подвержено просадке из-за перекоса фаз.
Подключение электричества к загородному дому с помощью трех фаз не снимает полностью проблему перекоса фаз, так как в общей электросети, как указывалось ранее, достаточно много разных потребителей электроэнергии. Однако в своей внутренней электросети, т.е.
после прибора учета электроэнергии, необходимо распределить нагрузку однофазных потребителей электроэнергии максимально равномерно.
Далее, при подключении электричества к загородному дому не следует упускать из вида то, что напряжение трехфазной электросети составляет 380 В, которое ощутимо выше привычных 220 В.
Поэтому при работе и эксплуатации трехфазной электросети требуется повышенное внимание уделять электробезопасности. Если подходить с позиций норм пожарной безопасности, то трехфазная электросеть также более опасна по той причине, что ток короткого замыкания будет намного выше.
На заметку. Нередко в ТТХ однофазных электрических аппаратов указываются два значения питающего напряжения, в частности для некоторых типов сварочных трансформаторов — 220 В и 380 В, т.е. фазное напряжение и линейное соответственно.
Учитывая большую потребляемую мощность подобными изделиями, рекомендуется с целью уменьшения перекоса фаз подключать их к линейному напряжению 380 В, т.е. к двум фазам.
При выборе фаз следует исходить из того, чтобы фаза, от которой осуществляется питание бытовой радиоэлектронной техники, чувствительной к перепадам напряжения, не была задействована.
Подводя итог сказанному, следует еще раз акцентировать внимание на основных недостатках и преимуществах подключения трехфазной электросети к загородному дому.
Итак, к основным недостаткам трехфазной электросети можно отнести:
Основные преимущества трехфазной электросети:
Таким образом, практика подключения электричества с использованием трехфазной электросети себя оправдывает, если жилая площадь загородного дома более 100 кв. м.
В этом случае однофазных потребителей электроэнергии может быть очень много и нагрузку во внутренней электросети можно распределить с соблюдением максимальной симметрии.
Также трехфазная электросеть удобна тем владельцам загородных домов, который планируют подключение электричества для мощных трехфазных потребителей электроэнергии. В остальных случаях подключение трехфазной электросети может оказаться излишним и стать причиной очередной головной боли владельца загородного дома.
В заключение для тех, кто любит мастерить своим руками будет полезен «Сборник технической литературы».
Перекос фаз в трехфазной сети: что это такое, причины, последствия, защита
Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью.
При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни.
Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.
Что такое перекос фаз?
Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.
Диаграмма напряжений в идеальных трехфазных сетях
Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В).
К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения.
В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.
Пример диаграммы напряжений при возникновении перекоса
Допустимые нормы значений перекоса
Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.
Нормы несимметрии напряжения ГОСТ 13109-97
Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.
Вырезка из СП 31-110 (п 9.5)
Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность.
Первая считается основной, она определяет номинальное напряжение.
Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.
Причины перекоса фаз в трехфазной сети
Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.
Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью.
Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже.
В данном случае RН это сопротивления нагрузок, одинаковые по значению.
Перекос фаз, вызванный обрывом нейтрали
В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.
К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.
Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:
Несимметрия в высоковольтных сетях
Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь.
Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ.
Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.
В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах.
Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью.
Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.
Опасность и последствия
Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях.
К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии.
В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.
При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.
Перечислим, какие последствия можно ожидать, когда появляется перекос:
Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.
Защита от перекоса фаз в трехфазной сети
Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения – установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.
Реле контроля фаз (А) и пример схемы его подключения (В)
Данный трехфазный автомат может обладать следующими функциями:
Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.
Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.
Защита в однофазной сети
В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.
Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.
Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ) напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.
Две фазы в розетке. Причины. Что делать?
Здравствуйте, уважаемые читатели сайта sesaga.ru. Иногда в электрической проводке возникает интересная неисправность, которая приводит неопытного электрика или простого любителя в затруднительное положение. Такой неисправностью является возникновение второй фазы в розетке, которая там оказывается на месте нуля, что заставляет сильно призадуматься.
На самом же деле на обоих гнездах розетки присутствует одна и та же фаза, так как в однофазной электрической сети переменное напряжение 220В формируется одним фазным и одним нулевым проводниками, и второй фазы там быть не может. Но именно понимание этого и вызывает некоторое недоумение, когда на месте штатного нуля обнаруживается фаза.
Если бы в розетке действительно оказалась вторая фаза, то напряжение между обеими фазами составило бы 380В и все включенные бытовые приборы пришлось бы нести в ремонтную мастерскую.
Немного теории
Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу.
Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания.
От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу.
Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N).
При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены.
При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва.
Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя.
Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом.
Совет. Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать мультиметр.
А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго:
1. Обрыв нуля во входном щитке дома или квартиры;
2. Обрыв нуля на входе или внутри распределительной коробки;
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.
1. Обрыв нуля во входном щитке дома или квартиры
Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе.
Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара, которое постепенно переходит в обрыв.
При отсутствии нуля все электрические приборы в доме работать не будут.
Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания бытовой техники или нить накала лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине.
Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине.
2. Обрыв нуля на входе или внутри распределительной коробки
При обрыве нулевой жилы перед распределительной коробкой или в самой коробке проблема с нулем и работой электрооборудования будет именно в том помещении дома или квартиры, в которое распределяет напряжение данная коробка. При этом в соседних помещениях все будет работать в штатном режиме.
На рисунке выше видно, что перед левой распределительной коробкой произошел разрыв нулевой жилы провода, и фаза через нить накала лампы (нагрузку) попадает на розеточный ноль.
При поиске такой неисправности вскрывается проблемная коробка и находится скрутка общего нуля (она самая толстая в коробке). Жилы скрутки отрезаются, заново разделываются и опять скручиваются вместе.
Совет. Если провод медный, то скрутку желательно пропаять.
Когда ноль обрывается перед распределительной коробкой, как показано на верхнем рисунке, для поиска обрыва часто приходится вскрывать в стене штробу с этим проводом, чтобы найти место повреждения.
При поиске такой неисправности сначала в коробке находят скрутку с общим нулем и раскручивают на отдельные жилы. Затем каждая нулевая жила вызванивается до розеток и до потолка. Жила, которая не прозвонится, и будет являться входящим проводом в коробку.
Далее этот провод продергивается и вскрывается штукатурка в стене для поиска места повреждения провода. Однако такая неисправность относится к разряду трудновыполнимых, потому как ковырять стену мало кто берется – проще проложить новую трассу.
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции
Может возникнуть ситуация, когда при сверлении отверстия, вкручивании самореза или забивании гвоздя в стену нарушается электрическая проводка. В довесок к этому, повреждение проводки сопровождается коротким замыканием, из-за которого провод повреждается полностью или частично. Лечится такая неисправность вскрытием места повреждения и восстановлением поврежденного участка провода.
Иногда при такой неисправности можно также наблюдать две фазы в розетке.
В момент замыкания происходит сварка фазной и нулевой жилы вместе, и поэтому фаза беспрепятственно попадает на нулевую жилу.
Причем даже при выключенном из розеток электрооборудования и отключенных выключателей освещения фаза будет присутствовать на тех розетках и выключателях, на которые подается напряжение от этого провода.
Лечится неисправность восстановлением поврежденного участка проводки.
Если же остались вопросы, то в дополнение к статье посмотрите видеоролик, где также раскрыта тема обрыва нуля.
В этой статье мы рассмотрели только самые распространенные неисправности, возникающие в однофазной электрической сети при повреждении нулевой жилы провода. Теперь если у Вас в розетке появятся две фазы, Вы сможете легко определить и устранить подобную неисправность.
Удачи!