какое наибольшее количество символов может содержаться в кодовой таблице ascii

ASCII таблица

какое наибольшее количество символов может содержаться в кодовой таблице ascii

ASCIIA merican S tandard C ode for I nformation I nterchange.

ASCII была разработана (1963 год) для кодирования символов, коды которых помещались в 7 бит (128 символов). Со временем кодировка была расширена до 8-ми бит (256 символов), коды первых 128-и символов не изменились.

Управляющие символы ASCII (код символа 0-31)

Первые 32 символа в ASCII-таблице не имеют печатных кодов и используются для управления периферийными устройствами, телетайпами, принтерами и т.д.

DECOCTHEXBINSymbolHTML NumberHTML NameDescription
00000x0000000000NUL \0& #000;Null char
10010x0100000001SOH& #001;Start of Heading
20020x0200000010STX& #002;Start of Text
30030x0300000011ETX& #003;End of Text
40040x0400000100EOT& #004;End of Transmission
50050x0500000101ENQ& #005;Enquiry
60060x0600000110ACK& #006;Acknowledgment
70070x0700000111BEL& #007;Bell
80100x0800001000BS& #008;Back Space
90110x0900001001HT \t& #009;Tab
100120x0A00001010LF \n& #010;Новая строка
110130x0B00001011VT& #011;Vertical Tab
120140x0C00001100FF& #012;Form Feed
130150x0D00001101CR \r& #013;Возврат каретки
140160x0E00001110SO& #014;Shift Out / X-On
150170x0F00001111SI& #015;Shift In / X-Off
160200x1000010000DLE& #016;Data Line Escape
170210x1100010001DC1& #017;Device Control 1 (oft. XON)
180220x1200010010DC2& #018;Device Control 2
190230x1300010011DC3& #019;Device Control 3 (oft. XOFF)
200240x1400010100DC4& #020;Device Control 4
210250x1500010101NAK& #021;Negative Acknowledgement
220260x1600010110SYN& #022;Synchronous Idle
230270x1700010111ETB& #023;End of Transmit Block
240300x1800011000CAN& #024;Cancel
250310x1900011001EM& #025;End of Medium
260320x1A00011010SUB& #026;Substitute
270330x1B00011011ESC& #027;Escape
280340x1C00011100FS& #028;File Separator
290350x1D00011101GS& #029;Group Separator
300360x1E00011110RS& #030;Record Separator
310370x1F00011111US& #031;Unit Separator
DECOCTHEXBINSymbolHTML NumberHTML NameDescription
Печатные символы ASCII (код символа 32-127)

Буквы, цифры, знаки препинания и другие символы расположенные на клавиатуре (англ.).

Источник

ASCII

какое наибольшее количество символов может содержаться в кодовой таблице ascii

какое наибольшее количество символов может содержаться в кодовой таблице ascii

ASCII (англ. American Standard Code for Information Interchange ) — американская стандартная кодировочная таблица для печатных символов и некоторых специальных кодов. В американском варианте английского языка произносится [э́ски], тогда как в Великобритании чаще произносится [а́ски]; по-русски произносится также [а́ски] или [аски́].

ASCII представляет собой кодировку для представления десятичных цифр, латинского и национального алфавитов, знаков препинания и управляющих символов. Изначально разработанная как 7-битная, с широким распространением 8-битного байта ASCII стала восприниматься как половина 8-битной. В компьютерах обычно используют расширения ASCII с задействованным 8-м битом и второй половиной кодовой таблицы (например КОИ-8).

Содержание

Наложение символов

Благодаря символу BS (возврат на шаг) на принтере можно печатать один символ поверх другого. В ASCII было предусмотрено добавление таким образом диакритики к буквам, например:

Примечание: в старых шрифтах апостроф ‘ рисовался с наклоном влево, а тильда

была сдвинута вверх, так что они как раз подходили на роль акута и тильды сверху.

Если на символ накладывается тот же символ, то получается эффект жирного шрифта, а если на символ накладывается подчёркивание, то получается подчёркнутый текст.

Примечание: это используется, например, в справочной системе man.

Национальные варианты ASCII

Стандарт ISO 646 (ECMA-6) предусматривает возможность размещения национальных символов на месте @ [ \ ] ^ `

. В дополнение к этому, на месте # может быть размещён £, а на месте $¤. Такая система хорошо подходит для европейских языков, где нужны лишь несколько дополнительных символов. Вариант ASCII без национальных символов называется US-ASCII, или «International Reference Version».

Для некоторых языков с нелатинской письменностью (русского, греческого, арабского, иврита) существовали более радикальные модификации ASCII. Одним из вариантов был отказ от строчных латинских букв — на их месте размещались национальные символы (для русского и греческого — только заглавные буквы). Другой вариант — переключение между US-ASCII и национальным вариантом «на лету» с помощью символов SO (Shift Out) и SI (Shift In) — в этом случае в национальном варианте можно полностью устранить латинские буквы и занять всё пространство под свои символы. См. также КОИ-7.

Впоследствии оказалось удобнее использовать 8-битные кодировки (кодовые страницы), где нижнюю половину кодовой таблицы (0—127) занимают символы US-ASCII, а верхнюю (128—255) — дополнительные символы, включая набор национальных символов. Таким образом, верхняя половина таблицы ASCII до повсеместного внедрения Юникода активно использовалась для представления локализированных символов, букв местного языка. Отсутствие единого стандарта размещения кириллических символов в таблице ASCII доставляло множество проблем с кодировками (КОИ-8, Windows-1251 и другие). Другие языки с нелатинской письменностью тоже страдали из-за наличия нескольких разных кодировок.

В Юникоде первые 128 символов тоже совпадают с соответствующими символами US-ASCII.

Кодировка

Символ 0x5e в первой версии стандарта ASCII (1963) соответствовал стрелке вверх, а символ 0x5f — стрелке влево. Стандарт ECMA-6 (1965) заменил их на знак вставки (используемый также в роли циркумфлекса) и нижнюю черту (подчёркивание) соответственно.

Управляющие символы

Поскольку ASCII изначально предназначался для обмена информацией (по телетайпу), в нём, кроме информационных символов, используются символы-команды для управления связью. Это обычный набор спецсигналов, применявшийся и в других докомпьютерных средствах обмена сообщениями (азбука Морзе, семафорная азбука), дополненный с учётом специфики устройства.

(После названия каждого символа указан его 16-ричный код)

Структурные свойства таблицы

Представление ASCII в ЭВМ

На подавляющем большинстве современных компьютеров минимально адресуемая единица памяти — 8-битный байт, поэтому там используются 8-битные, а не 7-битные символы. Обычно символ ASCII расширяют до 8 бит, просто добавляя один нулевой бит в качестве старшего.

На компьютерах системы IBM/360, однако, в случае использования ASCII применялся другой метод: 6-й бит (если считать самый младший бит первым) перемещается в 7-й, а бывший 7-й «раздваивается» и копируется и в 8-й бит, и в 6-й. Получается такая таблица [1] :

.0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
0.NULSOHSTXETXEOTENQACKBELBSTABLFVTFFCRSOSI
1.DLEDC1DC2DC3DC4NAKSYNETBCANEMSUBESCFSGSRSUS
2.!«#$%&()*+,./
3.0123456789:;?
4.@ABCDEFGHIJKLMNO
5.PQRSTUVWXYZ[\]^_
6.`abcdefghijklmno
7.pqrstuvwxyz <|>
.0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
0.NULSOMEOAEOMEQTWRURUBELLBKSPHTLFVTFFCRSOSI
1.DC0DC1DC2DC3DC4ERRSYNCLEMS0S1S2S3S4S5S6S7
2.
3.
4.BLANK!«#$%&()*+,./
5.0123456789:;?
6.
7.
8.
9.
A.@ABCDEFGHIJKLMNO
B.PQRSTUVWXYZ[\]
C.
D.
E.abcdefghijklmno
F.pqrstuvwxyzESCDEL

На тех компьютерах, где минимально адресуемой единицей памяти было 36-битное слово, поначалу использовали 6-битные символы (1 слово = 6 символов). После перехода на ASCII на таких компьютерах в одном слове стали размещать либо 5 семибитных символов (1 бит оставался лишним), либо 4 девятибитных символа.

ASCII-коды используются также для определения нажатой клавиши при программировании. Для стандартной QWERTY-клавиатуры таблица кодов выглядит следующим образом:

Источник

Представление символов, таблицы кодировок

Содержание

Представление символов в вычислительных машинах [ править ]

В вычислительных машинах символы не могут храниться иначе, как в виде последовательностей бит (как и числа). Для передачи символа и его корректного отображения ему должна соответствовать уникальная последовательность нулей и единиц. Для этого были разработаны таблицы кодировок.

Таблицы кодировок [ править ]

На заре компьютерной эры на каждый символ было отведено по пять бит. Это было связано с малым количеством оперативной памяти на компьютерах тех лет. В эти [math]32[/math] символа входили только управляющие символы и строчные буквы английского алфавита.

С ростом производительности компьютеров стали появляться таблицы кодировок с большим количеством символов. Первой семибитной кодировкой стала ASCII7. В нее уже вошли прописные буквы английского алфавита, арабские цифры, знаки препинания. Затем на ее базе была разработана ASCII8, в которым уже стало возможным хранение [math]256[/math] символов: [math]128[/math] основных и еще столько же расширенных. Первая часть таблицы осталась без изменений, а вторая может иметь различные варианты (каждый имеет свой номер). Эта часть таблицы стала заполняться символами национальных алфавитов.

Но для многих языков (например, арабского, японского, китайского) [math]256[/math] символов недостаточно, поэтому развитие кодировок продолжалось, что привело к появлению UNICODE.

Кодировки стандарта ASCII [ править ]

Определение:
ASCII — таблицы кодировок, в которых содержатся основные символы (английский алфавит, цифры, знаки препинания, символы национальных алфавитов(свои для каждого региона), служебные символы) и длина кода каждого символа [math]n = 8[/math] бит.

Кодировки стандарта ASCII ( [math]8[/math] бит):

Структурные свойства таблицы [ править ]

Кодировки стандарта UNICODE [ править ]

Юникод или Уникод (англ. Unicode) — это промышленный стандарт обеспечивающий цифровое представление символов всех письменностей мира, и специальных символов.

Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium, Unicode Inc.). Применение этого стандарта позволяет закодировать очень большое число символов из разных письменностей. Стандарт состоит из двух основных разделов: универсальный набор символов (англ. UCS, universal character set) и семейство кодировок (англ. UTF, Unicode transformation format). Универсальный набор символов задаёт однозначное соответствие символов кодам — элементам кодового пространства, представляющим неотрицательные целые числа.Семейство кодировок определяет машинное представление последовательности кодов UCS.

Коды в стандарте Unicode разделены на несколько областей. Область с кодами от U+0000 до U+007F содержит символы набора ASCII с соответствующими кодами. Далее расположены области знаков различных письменностей, знаки пунктуации и технические символы. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+052F, от U+2DE0 до U+2DFF, от U+A640 до U+A69F. Часть кодов зарезервирована для использования в будущем.

Кодовое пространство [ править ]

Хотя формы записи UTF-8 и UTF-32 позволяют кодировать до [math]2^<31>[/math] [math](2\ 147\ 483\ 648)[/math] кодовых позиций, было принято решение использовать лишь [math]1\ 112\ 064[/math] для совместимости с UTF-16. Впрочем, даже и этого на текущий момент более чем достаточно — в версии 6.0 используется чуть менее [math]110\ 000[/math] кодовых позиций ( [math]109\ 242[/math] графических и [math]273[/math] прочих символов).

Кодовое пространство разбито на [math]17[/math] плоскостей (англ. planes) по [math]2^<16>[/math] [math](65\ 536)[/math] символов. Нулевая плоскость называется базовой, в ней расположены символы наиболее употребительных письменностей. Первая плоскость используется, в основном, для исторических письменностей, вторая — для для редко используемых иероглифов китайского письма, третья зарезервирована для архаичных китайских иероглифов. Плоскости [math]15[/math] и [math]16[/math] выделены для частного употребления.

Плоскости Юникода
ПлоскостьНазваниеДиапазон символов
Plane 0Basic multilingual plane (BMP)U+0000…U+​FFFF
Plane 1Supplementary multilingual plane (SMP)U+10000…U+​1FFFF
Plane 2Supplementary ideographic plane (SIP)U+20000…U+​2FFFF
Planes 3-13UnassignedU+30000…U+​DFFFF
Plane 14Supplement­ary special-purpose plane (SSP)U+E0000…U+​EFFFF
Planes 15-16Supplement­ary private use area (S PUA A/B)U+F0000…U+​10FFFF

Модифицирующие символы [ править ]

какое наибольшее количество символов может содержаться в кодовой таблице ascii

Графические символы в Юникоде делятся на протяжённые и непротяжённые. Непротяжённые символы при отображении не занимают дополнительного места в строке. К примеру, к ним относятся знак ударения. Протяжённые и непротяжённые символы имеют собственные коды, но последние не могут встречаться самостоятельно. Протяжённые символы называются базовыми (англ. base characters), а непротяженные — модифицирующими (англ. combining characters). Например символ «Й» (U+0419) может быть представлен в виде базового символа «И» (U+0418) и модифицирующего символа « ̆» (U+0306).

Способы представления [ править ]

Юникод имеет несколько форм представления (англ. Unicode Transformation Format, UTF): UTF-8, UTF-16 (UTF-16BE, UTF-16LE) и UTF-32 (UTF-32BE, UTF-32LE). Была разработана также форма представления UTF-7 для передачи по семибитным каналам, но из-за несовместимости с ASCII она не получила распространения и не включена в стандарт.

UTF-8 [ править ]

Символы UTF-8 получаются из Unicode cледующим образом:

UnicodeUTF-8Представленные символы
0x00000000 — 0x0000007F0xxxxxxxASCII, в том числе английский алфавит, простейшие знаки препинания и арабские цифры
0x00000080 — 0x000007FF110xxxxx 10xxxxxxкириллица, расширенная латиница, арабский алфавит, армянский алфавит, греческий алфавит, еврейский алфавит и коптский алфавит; сирийское письмо, тана, нко; Международный фонетический алфавит; некоторые знаки препинания
0x00000800 — 0x0000FFFF1110xxxx 10xxxxxx 10xxxxxxвсе другие современные формы письменности, в том числе грузинский алфавит, индийское, китайское, корейское и японское письмо; сложные знаки препинания; математические и другие специальные символы
0x00010000 — 0x001FFFFF11110xxx 10xxxxxx 10xxxxxx 10xxxxxxмузыкальные символы, редкие китайские иероглифы, вымершие формы письменности
111111xxслужебные символы c, d, e, f

Несмотря на то, что UTF-8 позволяет указать один и тот же символ несколькими способами, только наиболее короткий из них правильный. Остальные формы, называемые overlong sequence, отвергаются по соображениям безопасности.

Принцип кодирования [ править ]

Правила записи кода одного символа в UTF-8 [ править ]

1. Если размер символа в кодировке UTF-8 = [math]1[/math] байт

Код имеет вид (0aaa aaaa), где «0» — просто ноль, остальные биты «a» — это код символа в кодировке ASCII;

2. Если размер символа в кодировке в UTF-8 [math]\gt 1[/math] байт (то есть от [math]2[/math] до [math]6[/math] ):

2.1 Первый байт содержит количество байт символа, закодированное в единичной системе счисления; 2.2 «0» — бит терминатор, означающий завершение кода размера 2.3 далее идут значащие байты кода, которые имеют вид (10xx xxxx), где «10» — биты признака продолжения, а «x» — значащие биты.

В общем случае варианты представления одного символа в кодировке UTF-8 выглядят так:

Определение длины кода в UTF-8 [ править ]
Количество байт UTF-8Количество значащих бит
[math]1[/math][math]7[/math]
[math]2[/math][math]11[/math]
[math]3[/math][math]16[/math]
[math]4[/math][math]21[/math]
[math]5[/math][math]26[/math]
[math]6[/math][math]31[/math]

[math]C = 7[/math] при [math]n=1[/math]

[math]C = n\cdot5+1[/math] при [math]n\gt 1[/math]

UTF-16 [ править ]

UTF-16LE и UTF-16BE [ править ]

Один символ кодировки UTF-16 представлен последовательностью двух байт или двух пар байт. Который из двух байт в словах идёт впереди, старший или младший, зависит от порядка байт. Подробнее об этом будет сказано ниже.

UTF-32 [ править ]

UTF-32 — один из способов кодирования символов из Юникод, использующий для кодирования любого символа ровно [math]32[/math] бита. Остальные кодировки, UTF-8 и UTF-16, используют для представления символов переменное число байт. Символ UTF-32 является прямым представлением его кодовой позиции (англ. code point).

Главный недостаток UTF-32 — это неэффективное использование пространства, так как для хранения символа используется четыре байта. Символы, лежащие за пределами нулевой (базовой) плоскости кодового пространства редко используются в большинстве текстов. Поэтому удвоение, в сравнении с UTF-16, занимаемого строками в UTF-32 пространства не оправдано.

Порядок байт [ править ]

В современной вычислительной технике и цифровых системах связи информация обычно представлена в виде последовательности байт. В том случае, если число не может быть представлено одним байтом, имеет значение в каком порядке байты записываются в памяти компьютера или передаются по линиям связи. Часто выбор порядка записи байт произволен и определяется только соглашениями.

[math]M = \sum_^A_i\cdot 256^i=A_0\cdot 256^0+A_1\cdot 256^1+A_2\cdot 256^2+\dots+A_n\cdot 256^n.[/math]

Варианты записи [ править ]

Порядок от старшего к младшему [ править ]

В этом же виде (используя представление в десятичной системе счисления) записываются числа индийско-арабскими цифрами в письменностях с порядком знаков слева направо (латиница, кириллица). Для письменностей с обратным порядком (арабская) та же запись числа воспринимается как «от младшего к старшему».

Порядок байт от старшего к младшему применяется во многих форматах файлов — например, PNG, FLV, EBML.

Порядок от младшего к старшему [ править ]

В противоположность порядку big-endian, соглашение little-endian поддерживают меньше кросс-платформенных протоколов и форматов данных; существенные исключения: USB, конфигурация PCI, таблица разделов GUID, рекомендации FidoNet.

Переключаемый порядок [ править ]

Многие процессоры могут работать и в порядке от младшего к старшему, и в обратном, например, ARM, PowerPC (но не PowerPC 970), DEC Alpha, MIPS, PA-RISC и IA-64. Обычно порядок байт выбирается программно во время инициализации операционной системы, но может быть выбран и аппаратно перемычками на материнской плате. В этом случае правильнее говорить о порядке байт операционной системы. Переключаемый порядок байт иногда называют англ. bi-endian.

Смешанный порядок [ править ]

Смешанный порядок байт (англ. middle-endian) иногда используется при работе с числами, длина которых превышает машинное слово. Число представляется последовательностью машинных слов, которые записываются в формате, естественном для данной архитектуры, но сами слова следуют в обратном порядке.

В процессорах VAX и ARM используется смешанное представление для длинных вещественных чисел.

Различия [ править ]

какое наибольшее количество символов может содержаться в кодовой таблице ascii

Для записи длинных чисел (чисел, длина которых существенно превышает разрядность машины) обычно предпочтительнее порядок слов в числе little-endian (поскольку арифметические операции над длинными числами производятся от младших разрядов к старшим). Порядок байт в слове — обычный для данной архитектуры.

Маркер последовательности байт [ править ]

Для определения формата представления Юникода в начало текстового файла записывается сигнатура — символ U+FEFF (неразрывный пробел с нулевой шириной), также именуемый маркером последовательности байт (англ. byte order mark (BOM)). Это позволяет различать UTF-16LE и UTF-16BE, поскольку символа U+FFFE не существует.

какое наибольшее количество символов может содержаться в кодовой таблице ascii

Представление BOM в кодировках

КодированиеПредставление (Шестнадцатеричное)
UTF-8EF BB BF
UTF-16 (BE)FE FF
UTF-16 (LE)FF FE
UTF-32 (BE)00 00 FE FF
UTF-32 (LE)FF FE 00 00

В кодировке UTF-8, наличие BOM не является существенным, поскольку, нет альтернативной последовательности байт. Когда BOM используется на страницах или редакторах для контента закодированного в UTF-8, иногда он может представить пробелы или короткие последовательности символов, имеющие странный вид (такие как ). Именно поэтому, при наличии выбора, для совместимости, как правило, лучше упустить BOM в UTF-8 контенте.Однако BOM могут еще встречаться в тексте закодированном в UTF-8, как побочный продукт перекодирования или потому, что он был добавлен редактором. В этом случае BOM часто называют подписью UTF-8.

Когда символ закодирован в UTF-16, его [math]2[/math] или [math]4[/math] байта можно упорядочить двумя разными способами (little-endian или big-endian). Изображение справа показывает это. Byte order mark указывает, какой порядок используется, так что приложения могут немедленно расшифровать контент. UTF-16 контент должен всегда начинатся с BOM.

BOM также используется для текста обозначенного как UTF-32. Аналогично UTF-16 существует два варианта четырёхбайтной кодировки — UTF-32BE и UTF-32LE. К сожалению, этот способ не позволяет надёжно различать UTF-16LE и UTF-32LE, поскольку символ U+0000 допускается Юникодом

Проблемы Юникода [ править ]

В Юникоде английское «a» и польское «a» — один и тот же символ. Точно так же одним символом (но отличающимся от «a» латинского) считаются русское «а» и сербское «а». Такой принцип кодирования не универсален; по-видимому, решения «на все случаи жизни» вообще не может существовать.

Примеры [ править ]

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *