какое множество называется замкнутым

Замкнутое множество

За́мкнутое мно́жество — подмножество пространства дополнение к которому открыто.

Содержание

Определение

Пусть дано топологическое пространство какое множество называется замкнутым. Множество какое множество называется замкнутымназывается замкнутым относительно топологии какое множество называется замкнутым, если существует открытое множество какое множество называется замкнутымтакое что какое множество называется замкнутым.

Замыкание

Замыканием множества какое множество называется замкнутымтопологического пространства какое множество называется замкнутымназывают минимальное по включению замкнутое множество какое множество называется замкнутымсодержащее какое множество называется замкнутым.

Замыкание множества какое множество называется замкнутымобычно обозначается какое множество называется замкнутым, какое множество называется замкнутымили какое множество называется замкнутым; последнее обозначение используется если надо подчеркнуть что какое множество называется замкнутымрассматривается как множество в пространстве какое множество называется замкнутым.

Свойства

Примеры

См. также

Литература

Полезное

Смотреть что такое «Замкнутое множество» в других словарях:

замкнутое множество — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN closed set … Справочник технического переводчика

ЗАМКНУТОЕ МНОЖЕСТВО — в топологическом пространстве множество, содержащее все свои предельные точки. Таким образом, все точки дополнения к 3. м. внутренние, и потому 3. м. можно определить как дополнение к открытому. Понятие 3. м. лежит в основе определения топологич … Математическая энциклопедия

ОТНОСИТЕЛЬНО ОТКРЫТОЕ (ЗАМКНУТОЕ) МНОЖЕСТВО — множество, открытое (замкнутое) относительно нек рого множества Е, множество Мтопологич. пространства Xтакое, что (черта сверху означает операцию замыкания). Для того чтобы нек рое множество было открытым (замкнутым) относительно Е, необходимо и… … Математическая энциклопедия

ОТКРЫТО-ЗАМКНУТОЕ МНОЖЕСТВО — подмножество топологич. пространства, одновременно открытое и замкнутое в нем. Топологич. пространство Xнесвязно тогда и только тогда, когда в нем имеется отличное от Xи от О. з. м. Если семейство всех О. з. м. топологич. пространства является… … Математическая энциклопедия

Замкнутое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Замкнутое подмножество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Множество второй категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Множество первой категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Замкнутое пространство — Для одноимённого математического понятия, смотрите Замкнутое множество и Пространство (математика) Ливневая канализация … Википедия

Источник

Математика, физика на «отлично»

Открытые и замкнутые множества

В курсе математического анализа на первом курсе ВУЗов встречается много непонятного и непривычного. Одна из первых таких «новых» тем — это открытые и замкнутые множества. Постараемся дать пояснения по данной тематике.

Перед тем, как приступить к постановке определений и задач, напомним значение используемых обозначений и кванторов :
∈ — принадлежит
∅ — пустое множество
Ε — множество действительных чисел
х* — закреплённая точка
А* — множество граничных точек
: — такое, что
⇒ — следовательно
∀ — для каждого
∃ — существует
Uε(х) — окрестность х по ε
ε(х) — проколотая окрестность х по ε

Итак,
Определение 1: Множество М ∈ Ε называется открытым, если для любого у ∈ М найдётся такое ε > 0, что окрестность y по ε строго меньше М
С помощью кванторов определение запишется следующим образом:
М ∈ Ε — открытое, если ∀ у∈М ∃ ε>0 : Uε(y) Определение 2: Точка x* ∈ E называется граничной точкой множества М, если в любой окрестности точки х содержатся точки как из множества М, так и из его дополнения.
Теперь с помощью кванторов:
х*∈ E — граничная точка, если ∀Uε(x) ∩ М ≠ ∅ и ∀Uε(x) ∩ Е\М

Определение 3: Множество называется замкнутым, если ему принадлежат все граничные точки. Пример — отрезок [a, b]

Стоит отметить, что существуют множества, которые одновременно и открытые, и замкнутые. Это, например, всё множество действительных чисел и пустое множество (позднее будет доказано, что это 2 возможных и единственных случая).

Докажем несколько теорем, связанных с открытым и замкнутым множествами.

Теорема 1: Пусть множество А — открытое. Тогда дополнение к множеству А является замкнутым множеством.
Доказательство: Обозначим дополнение множества А как множество В:
В = Е\А
Доказывать будем от противного.
Предположим, что В — незамкнутое. Тогда существует граничная точка х*, которая не принадлежит В, а значит — принадлежит А. По определению граничной точки окрестность х* имеет пересечение как с В, так и с А. Однако с другой стороны х* является внутренней точкой открытого множества А, поэтому вся окрестность точки х* лежит в А. Отсюда делаем вывод, что множества А и В пересекаются не по пустому множеству. Такого быть не может, поэтому наше предположение неверно и В является замкнутым множеством, ч. т. д.
В кванторах доказательство можно записать короче:
Предположим, что В — незамкнутое, тогда:
(1) ∃ х∈А*:х∈A ⇒ ∀Uε(x) ∩ В ≠ ∅ (определение граничной точки)
(2) ∃ х∈А*:х∈A ⇒ ∀Uε(x) ⊂ А ≠ ∅ (определение открытоко множества)
Из (1) и (2) ⇒ А ∩ В ≠ ∅. Но А ∩ В = А ∩ Е\А = 0. Противоречие. В — замкнутое, ч. т. д.

Теорема 2: Пусть множество А — замкнутое. Тогда дополнение к множеству А является открытым множеством.
Доказательство: Обозначим дополнение множества А как множество В:
В = Е\А
Доказывать будем от противного.
Предположим, что В — замкнутое множество. Тогда любая граничная точка лежит в В. Но так как А — также замкнутое множество, то все граничные точки принадлежат и ему. Однако точка не может одновременно принадлежать множеству и его дополнению. Противоречие. В — открытое множество, ч. т. д.
В кванторах это выглядеть будет следующим образом:
Предположим, что В — замкнутое, тогда:
(1) ∀ х∈А*:х∈A (из условия)
(1) ∀ х∈А*:х∈В (из предположения)
Из (1) и (2) ⇒ А ∩ В ≠ ∅. Но А ∩ В = А ∩ Е\А = 0. Противоречие. В — открытое, ч. т. д.

Теорема 3: Пусть множество А — замкнутое и открытое. Тогда А = Е или А = ∅
Доказательство: Начнём записывать подробно, но сразу использую кванторы.
Предположим, что множество С — замкнутое и открытое, причём С ≠ ∅ и С ≠ Е. Тогда очевидно, что С ⊆ Е.
(1) ∃ х∈А*:х∈С ⇒ ∀Uε(x) ∩ Е\С ≠ ∅ (определение граничной точки, которая принадлежит С)
(2) ∃ х∈А*:х∈A ⇒ ∀Uε(x) ⊂ В (определение открытого множества С)
Из (1) и (2) следует, что Е\С ∩ С ≠ ∅, но это неверно. Противоречие. С не может быть одновременно и открытым, и замкнутым, ч. т. д.

Математический анализ — это фундаментальная математика, сложная и непривычная для нас. Но надеюсь, что-то стало понятнее после прочтения статьи. В добрый путь!

Источник

Замкнутые и открытые множества

Одна из основных задач теории точечных множеств — изучение свойств различных типов точечных множеств. Познакомимся с этой теорией на двух примерах и изучим свойства так называемых замкнутых и открытых множеств.

Приведем примеры замкнутых и открытых множеств. Всякий отрезок есть замкнутое множество, а всякий интервал — открытое множество. Несобственные полуинтервалы и замкнуты, а несобственные интервалы и открыты. Вся прямая является одновременно и замкнутым и открытым множеством. Удобно считать пустое множество тоже одновременно замкнутым и открытым. Любое конечное множество точек на прямой замкнуто, так как оно не имеет предельных точек. Множество, состоящее из точек

Наша задача состоит в том, чтобы выяснить, как устроено произвольное замкнутое или открытое множество. Для этого нам понадобится ряд вспомогательных фактов, которые мы примем без доказательства.

1. Пересечение любого числа замкнутых множеств замкнуто.

2. Сумма любого числа открытых множеств есть открытое множество.

3. Если замкнутое множество ограничено сверху, то оно содержит свою верхнюю грань. Аналогично, если замкнутое множество ограничено снизу, то оно содержит свою нижнюю грань.

4. Если множество замкнуто, то его дополнение открыто и обратно.

Предложение 4 показывает, что между замкнутыми и открытыми множествами имеется весьма тесная связь: одни являются дополнениями других. В силу этого достаточно изучить одни замкнутые или одни открытые множества. Знание свойств множеств одного типа позволяет сразу выяснить свойства множеств другого типа. Например, всякое открытое множество получается путем удаления из прямой некоторого замкнутого множества.

В силу предложения 4, отсюда сразу вытекает, что всякое открытое множество на прямой представляет собой не более чем счетную сумму непересекающихся интервалов. В силу предложений 1 и 2, ясно также, что всякое множество, устроенное, как указано выше, действительно является замкнутым (открытым).

Как видно из нижеследующего примера, замкнутые множества могут иметь весьма сложное строение.

Канторово совершенное множество

Рассмотрим некоторые свойства этого множества. Множество замкнуто, так как оно образуется путем удаления из прямой некоторого, множества непересекающихся интервалов. Множество не пусто; во всяком случае в нем содержатся концы всех выброшенных интервалов.

Можно показать, что множество имеет мощность континуума. В частности, отсюда следует, что канторово совершенное множество содержит, кроме концов смежных интервалов, еще и другие точки. Действительно, концы смежных интервалов образуют лишь счетное множество.

Разнообразные типы точечных множеств постоянно встречаются в самых различных разделах математики, и знание их свойств совершенно необходимо при исследовании многих математических проблем. Особенно большое значение имеет теория точечных множеств для математического анализа и топологии.

Исследования Н.Н. Лузина и его учеников показали, что имеется глубокая связь между дескриптивной теорией множеств и математической логикой. Трудности, возникающие при рассмотрении ряда задач дескриптивной теории множеств (в частности, задач об определении мощности тех или иных множеств), являются трудностями логической природы. Напротив, методы математической логики позволяют более глубоко проникнуть в некоторые вопросы дескриптивной теории множеств.

Источник

Какое множество называется замкнутым

Одна из основных задач теории точечных множеств — изучение свойств различных типов точечных множеств. Мы познакомим читателя с этой теорией на двух примерах. Именно, мы изучим здесь свойства так называемых замкнутых и открытых множеств.

Множество называется замкнутым, если оно содержит все свои предельные точки. Если множество не имеет ни одной предельпой точки, то его тоже принято считать замкнутым. Кроме своих предельных точек, замкнутое множество может также содержать изолированные точки. Множество называется открытым, если каждая его точка является для него внутренней.

Приведем примеры замкнутых и открытых множеств. Всякий отрезок какое множество называется замкнутыместь замкнутое множество, а всякий интервал какое множество называется замкнутым— открытое множество. Несобственные полуинтервалы какое множество называется замкнутым

замкнуты, а несобственные интервалы какое множество называется замкнутымоткрыты. Вся прямая является одновременно и замкнутым и открытым множеством. Удобно считать пустое множество тоже одновременно замкнутым и открытым. Любое конечное множество точек на прямой замкнуто, так как оно не имеет предельных точек. Множество, состоящее из точек

какое множество называется замкнутым

замкнуто; это множество имеет единственную предельную точку какое множество называется замкнутымкоторая принадлежит множеству.

Наша задача состоит в том, чтобы выяснить, как устроено произвольное замкнутое или открытое множество. Для этого нам понадобится ряд вспомогательных фактов, которые мы примем без доказательства.

1. Пересечение любого числа замкнутых множеств замкнуто.

2. Сумма любого числа открытых множеств есть открытое множество.

3. Если замкнутое множество ограничено сверху, то оно содержит свою верхнюю грань. Аналогично, если замкнутое множество ограничено снизу, то оно содержит свою нижнюю грань.

Пусть Е — произвольное множество точек на прямой. Назовем дополнением множества Е и обозначим через какое множество называется замкнутыммножество всех точек на прямой, не принадлежащих множеству Е. Ясно, что если х есть внешняя точка для Е, то она является внутренней точкой для множества какое множество называется замкнутыми обратно.

4. Если множество F замкнуто, то его дополнение какое множество называется замкнутымоткрыто и обратно.

Предложение 4 показывает, что между замкнутыми и открытыми множествами имеется весьма тесная связь: одни являются дополнениями других. В силу этого достаточно изучить одни замкнутые или одни открытые множества. Знание свойств множеств одного типа позволяет сразу выяснить свойства множеств другого типа. Например, всякое открытое множество получается путем удаления из прямой некоторого замкнутого множества.

Приступаем к изучению свойств замкнутых множеств. Введем одно определение. Пусть F — замкнутое множество. Интервал какое множество называется замкнутымобладающий тем свойством, что ни одна из его точек не принадлежит множеству какое множество называется замкнутыма точки а и какое множество называется замкнутымпринадлежат какое множество называется замкнутымназывается смежным интервалом множества какое множество называется замкнутым. К числу смежных интервалов мы будем также относить несобственные интервалы какое множество называется замкнутымили какое множество называется замкнутымесли точка а или точка какое множество называется замкнутымпринадлежит множеству какое множество называется замкнутыма сами интервалы с F не пересекаются. Покажем, что если точка х не принадлежит замкнутому множеству какое множество называется замкнутымто она принадлежит одному из его смежных интервалов.

Обозначим через какое множество называется замкнутымчасть множества какое множество называется замкнутымрасположенную правее точки х. Так как сама точка х не принадлежит множеству какое множество называется замкнутымто какое множество называется замкнутымможно представить в форме пересечения

какое множество называется замкнутым

Каждое из множеств F замкнуто. Поэтому, в силу предложения 1, множество какое множество называется замкнутымзамкнуто. Если множество какое множество называется замкнутымпусто, то весь полуинтервал какое множество называется замкнутымпринадлежит множеству какое множество называется замкнутымДопустим теперь, что множество какое множество называется замкнутымне пусто. Так как это множество целиком расположено на полуинтервале какое множество называется замкнутымто оно ограничено снизу. Обозначим через какое множество называется замкнутымего нижнюю грань. Согласно предложению какое множество называется замкнутыма значит какое множество называется замкнутым. Далее, так как какое множество называется замкнутыместь нижняя грань множества какое множество называется замкнутым, то полуинтервал какое множество называется замкнутымлежащий левее точки какое множество называется замкнутымне содержит точек множества какое множество называется замкнутыми, следовательно, не содержит точек множества какое множество называется замкнутымИтак, мы построили полуинтервал какое множество называется замкнутымне содержащий точек множества какое множество называется замкнутымпричем либо какое множество называется замкнутымлибо точка какое множество называется замкнутымпринадлежит множеству какое множество называется замкнутымАналогично строится полуинтервал какое множество называется замкнутымне содержащий точек множества какое множество называется замкнутымпричем либо какое множество называется замкнутымлибо а какое множество называется замкнутымТеперь ясно, что интервал какое множество называется замкнутымсодержит точку х и является смежным интервалом множества какое множество называется замкнутымЛегко видеть, что если какое множество называется замкнутым— два смежных интервала множества какое множество называется замкнутымто эти интервалы либо совпадают, либо не пересекаются.

Из предыдущего следует, что всякое замкнутое множество на прямой получается путем удаления из прямой некоторого числа интервалов, а именно смежных интервалов множества какое множество называется замкнутымТак как каждый интервал содержит по крайней мере одну рациональную точку, а всех рациональных точек на прямой — счетное множество, то легко убедиться, что число всех смежных интервалов какое множество называется замкнутымболее чем счетно. Отсюда получаем окончательный вывод. Всякое замкнутое множество на прямой получается путем удаления из прямой не более чем счетного множества непересекающихся интервалов.

В силу предложения 4, отсюда сразу вытекает, что всякое открытое множество на прямой представляет собой не более чем счетную сумму непересекающихся интервалов. В силу предложений 1 и 2, ясно также, что всякое множество, устроенное, как указано выше, действительно является замкнутым (открытым).

Как видно из нижеследующего примера, замкнутые множества могут иметь весьма сложное строение.

Канторово совершенное множество. Построим одно специальное замкнутое множество, обладающее рядом замечательных свойств. Прежде всего удалим из прямой несобственные интервалы какое множество называется замкнутыми какое множество называется замкнутым. После этой операции у нас останется отрезок [0, 1]. Далее, удалим из этого отрезка интервал какое множество называется замкнутымсоставляющий его среднюю треть.

Из каждого из оставшихся двух отрезков какое множество называется замкнутымудалим его среднюю треть. Этот процесс удаления средних третей у остающихся отрезков продолжим неограниченно. Множество точек на прямой, остающееся после удаления всех этих интервалов, называется канторовым совершенным множеством; мы будем обозначать его буквой Р.

Рассмотрим некоторые свойства этого множества. Множество Р замкнуто, так как оно образуется путем удаления из прямой некоторого множества непересекающихся интервалов. Множество Р не пустот во всяком случае в нем содержатся концы всех выброшенных интервалов.

Замкнутое множество F называется совершенным, если оно не содержит изолированных точек, т. е. если каждая его точка является предельной точкой. Покажем, что множество Р совершенно. Действительно, если бы некоторая точка х была изолированной точкой множества Р, то она служила бы общим концом двух смежных интервалов этого множества. Но, согласно построению, смежные интервалы множества Р не имеют общих концов.

Множество Р не содержит ни одного интервала. В самом деле, допустим, что некоторый интервал какое множество называется замкнутымцеликом принадлежит множеству Р. Тогда он целиком принадлежит одному из отрезков, получающихся на какое множество называется замкнутымшаге построения множества Р. Но это невозможно, так как при какое множество называется замкнутымдлины этих отрезков стремятся к пулю.

Можно показать, что множество Р имеет мощность континуума. В частности, отсюда следует, что канторово совершенное множество содержит, кроме концов смежных интервалов, еще и другие точки. Действительно, концы смежных интервалов образуют лишь счетное множество.

Разнообразные типы точечных множеств постоянно встречаются в самых различных разделах математики, и знание их свойств совершенно необходимо при исследовании многих математических проблем. Особенно большое значение имеет теория точечных множеств для математического анализа и топологии.

Приведем несколько примеров появления точечных мпожеств в классических разделах анализа. Пусть какое множество называется замкнутым— непрерывная функция, заданная на отрезке какое множество называется замкнутымЗафиксируем число а и рассмотрим множество тех точек х, для которых какое множество называется замкнутымНетрудно показать, что это множество может быть произвольным замкнутым множеством, расположенным на отрезке какое множество называется замкнутымТочно так же множество точек х, для которых какое множество называется замкнутымможет быть каким угодно открытым множеством какое множество называется замкнутымЕсли какое множество называется замкнутыместь последовательность непрерывных функций, заданных на отрезке какое множество называется замкнутымто множество тех точек х, где эта последовательность сходится, не может быть произвольным, а принадлежит к вполне определенному типу.

Математическая дисциплина, занимающаяся изучением строения точечных множеств, называется дескриптивной теорией множеств. Весьма большие заслуги в деле развития дескриптивной теории множеств принадлежат советским математикам — Н. Н. Лузину и его ученикам П. С. Александрову, М. Я. Суслину, А. Н. Колмогорову, М. А. Лаврентьеву, П. С. Новикову, Л. В. Келдыш, А. А. Ляпунову и др.

Исследования Н. Н. Лузина и его учеников показали, что имеется глубокая связь между дескриптивной теорией множеств и математической логикой. Трудности, возникающие при рассмотрении ряда задач дескриптивной теории множеств (в частности, задач об определении мощности тех или иных множеств), являются трудностями логической природы. Напротив, методы математической логики позволяют более глубоко проникнуть в некоторые вопросы дескриптивной теории множеств.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *