какое максимальное количество углерода может раствориться в железе с решеткой гцк

Структурные составляющие системы железо-углерод

Степень растворимости углерода в железе определяется первоначальной структурой кристаллической решетки металла.

Объемноцентрированная кубическая (ОЦК) решетка a-железа имеет пустые места (поры) в середине каждого ребра, их двенадцать. Диаметр его составляет 0,62 Å. Если сравнить данное значение с таковым для углерода (0,77 Å), то можно увидеть, что оно практически недоступно для внедряющегося в железо углерода. Поэтому растворимость данного неметалла в a-железе очень низка. При 727 °С в железе растворяется лишь около 0,02 % углерода. От 1392 до 1499 °С максимальная предельная растворимость углерода составляет 0,1 %. При охлаждении раствора до комнатной температуры данное значение снижается до 0,006 %.

Гранецентрированная кубическая (ГЦК) решетка g-железа в отличие от ОЦК располагает всего одной порой, но с большим диаметром – 1,02 Å. Это позволяет разместиться внедряемому ядру углерода в ней, слегка исказив ее, вызвав небольшое увеличение параметров. При 1147 °С предельная растворимость углерода в g-железе составляет 2,14 %, а при 727 °С лишь 0,8 % (рис. 1.33).

б
а

какое максимальное количество углерода может раствориться в железе с решеткой гцккакое максимальное количество углерода может раствориться в железе с решеткой гцк

Твердые растворы внедрения углерода и других примесей в a-железе называют ферритом (a), а в g-железе – аустенитом (g). Феррит получил свое название от латинского наименования железа – «Ferrum». Различают низкотемпературный a-феррит с растворимостью углерода до 0,02 % и высокотемпературный d-феррит с предельной растворимостью углерода 0,1 %. Углерод в решетке феррита располагается в центре объема куба. Под микроскопом феррит выявляется в виде однородных полиэдрических зерен. Твердость и механические свойства феррита близки к таковым технически чистого железа (sв = 250 МПа, s0,2 = 120 МПа, d = 50 %, y = 80 %, НВ 80 – 90 кгс/мм 2 или 800 – 900 МПа). Они зависят от количества элементов, присутствующих в нем (многие химические элементы образуют с ферритом твердые растворы замещения).

Железо и углерод, взаимодействуя друг с другом, могут образовывать ряд металлических карбидов с различными химическими формулами: Fе3С, Fе2С, FеС и другие. Наиболее распространенным и широко применяемым из них является карбид железа среднего состава Fе3С. Стехиометрическое соотношение элементов в нем соответственно равно 3 : 1. Концентрация углерода составляет 6,67 % масс. Кристаллическая решетка карбида железа очень сложная. Она представляет собой орторомбическую структуру с плотной упаковкой структурных единиц (в элементарной ячейке расположено 12 ядерных остовов железа и 4 углерода) и имеет следующие параметры: а = 6,726 Å, b = 5,077 Å, c = 4,515 Å. Характер связи между ядрами железа чисто металлический, а между железом и углеродом ионно-металлический с преобладанием металличности и они оба ведут себя как металлы (рис. 1.34).

Такое строение приводит к тому, что он проявляет металлические признаки: блеск, высокая электропроводность, уменьшающаяся с повышением температуры, легкость образования твердых растворов с металлами. Данное соединение обладает высочайшей твердостью, сравнимой только с алмазом, он легко царапает стекло (НВ более 800 кгс/мм 2 ), но чрезвычайно низкой практически нулевой пластичностью (большой хрупкостью), значительной жаропрочностью и обычно более высокой температурой плавления, чем исходный металл. Эти свойства также являются следствием его особого кристаллического строения. Благодаря своей высокой твердости он был назван цементитом. Из-за его термической и химической неустойчивости температура плавления карбида железа точно не определена в связи с возможностью его распада до чистых элементов: железа и углерода в виде графита. Она принимается примерно равной 1500 °С (1650 °С теоретическая). Однако данный процесс распада имеет важное практическое значение при производстве промышленных чугунов, что будет описано в соответствующих разделах.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Аллотропных видоизменений карбид железа не имеет. До 210 °С цементит ферромагнитен, выше данной температуры он теряет магнитные свойства. Карбид железа способен образовывать твердые растворы замещения, в которых углерод обменивается на такие неметаллы, как азот или кислород, а железо замещается металлами: хромом, вольфрамом, марганцем и другими. Их называют легированными цементитами и описывают брутто-формулой М3С, где буквой М обозначают железо или другие металлы-заместители.

Рассмотренные нами структурные составляющие являются однофазными. В системе железо-углерод наряду с ними при затвердевании сплавов могут формироваться и двухфазные структуры. Это ледебурит и перлит.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

1.4.4. Диаграмма состояния железо – цементит (метастабильное равновесие)

Обозначение точекТемпература, °СКонцентрация углерода, % массПояснение
A0,00температура плавления железа
D6,67температура плавления цементита
H0,10предельная концентрация углерода в d-феррите
J0,16максимальное количество углерода в аустените
B0,50концентрация углерода в жидкой фазе, находящейся в равновесии с d-ферритом и аустенитом
N0,00полиморфное превращение a « g
E2,14предельное содержание углерода в аустените
C4,31максимальное количество углерода в ледебурите (g + Fe3C)
F6,67наибольшая концентрация углерода в цементите
G0,00полиморфное превращение a « g
P0,02предельное содержание углерода в феррите (a)
S0,80максимальное количество углерода в перлите (a + Fe3C)
K6,67наибольшая концентрация углерода в цементите
Q0,006минимальное содержание углерода в феррите
L6,67предельное количество углерода в цементите

Это связано с тем, что наибольшее практическое значение имеет только часть диаграммы состояния железо-углерод, в которой показано формирование цементита, так как сплавы, содержащие большое количество углерода, очень хрупкие и практически не применяются в промышленности. Поэтому диаграмму состояния системы железо-углерод изображают только до концентрации углерода 6,67 % масс и называют диаграммой состояний железо-цементит (рис. 1.36). Ось абсцисс на данном рисунке двойная: концентрация углерода и цементита соответственно.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

В целом диаграмму железо – цементит можно рассматривать как комбинированную: с образованием механических смесей (эвтектики и эвтектоида), формированием твердых растворов с ограниченной растворимостью углерода и химического соединения.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

На основании изложенного можно отметить, для сплавов с концентрацией углерода менее 0,5 % масс первоначальный процесс кристаллизации в любом случае будет заканчиваться формированием аустенита.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

какое максимальное количество углерода может раствориться в железе с решеткой гцк

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Рис. 1.40. Структура сталей с различной концентрацией углерода: а – 0,05; б – 0,25; в – 0,40; г – 0,70; д – 0,80; е – 1,20 %

Если знать общее содержание неметалла в сплаве, то можно рассчитать предполагаемый состав его структуры: а именно количество перлитной составляющей. Для этого необходимо составить следующую пропорцию: если концентрация углерода составляет 0,8 %, то структура будет на 100 % состоять из перлита, а для сплава с содержанием 0,4 % С масс (сталь 40) количество перлита будет равно Х %. Отсюда концентрацию перлита в стали 40 вычислим по уравнению: какое максимальное количество углерода может раствориться в железе с решеткой гцк.

Чугуны, имеющие равновесную структуру согласно диаграмме железо-цементит и содержащие углерод в связанном состоянии в виде карбида железа, носят название «белых», так как их излом имеет белый цвет по сравнению с таковым у промышленных серых, в которых весь присутствующий неметалл находится в аллотропной модификации графита.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

какое максимальное количество углерода может раствориться в железе с решеткой гцккакое максимальное количество углерода может раствориться в железе с решеткой гцк

Рис. 1.42. Микроструктура белых чугунов: а – доэвтектический (ледебурит + перлит); б – эвтектический (ледебурит); в – заэвтектический (ледебурит + первичный цементит)

Для полного понимания процесса кристаллизации в системе железо-углерод отдельно рассматривается кристаллизация чистого железа (рис. 1.43).

Таким образом, индивидуальные железоуглеродистые сплавы после окончания процесса кристаллизации каждый имеет свою структуру, указанную выше. Однако, как можно заметить, ниже 727 °С для всех фазовый состав обусловливается лишь различным соотношением в нем феррита и цементита, относительное содержание которых можно определить в зависимости от концентрации углерода в сплаве по диаграмме состояния.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Рис. 1.43. Кривая охлаждения чистого железа со структурами его полиморфных модификаций

Вопросы для самопроверки

1. В виде каких аллотропных (полиморфных) модификаций в зависимости от температуры может существовать железо? Дайте их общую характеристику.

2. Приведите физико-механические показатели железа?

3. Охарактеризуйте химические свойства железа?

4. Чем можно объяснить большую растворимость углерода в g-железе по сравнению с его a-модификацией?

5. Какие твердые растворы образуются при растворении углерода в железе? Какова их структура? Как она влияет на свойства раствора?

7. Какие двухфазные структуры образуются в системе железо – цементит? Назовите и охарактеризуйте их?

8. Почему диаграмму состояния железо – углерод отображают только до [C] = 6,67 % масс?

9. Приведите значения температуры и концентраций углерода в характерных точках диаграммы состояния. Каким структурам и превращениям они соответствуют?

10. По основной диаграмме состояния проанализируйте процессы кристаллизации сплавов с концентрацией углерода: а) от 0 до 0,5 %; б) от 0,5 до 0,8 %; в) равную 0,8 %; г) в интервале 0,8 – 2,14 %; д) от 2,14 до 4,31 %; е) равную 4,31 % и ж) в интервале 4,31 – 6,67 %.

11. Какие конечные структуры имеют стали и чугуны, образующиеся в предыдущих диапазонах концентраций углерода на диаграмме состояния?

12. Как структурный и фазовый состав стали и чугуна зависят от содержания углерода и температуры?

Дата добавления: 2015-09-21 ; просмотров: 4676 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Диаграмма железо-углерод

Диаграмма железо-углерод – это графическое отображение структуры сплавов, состоящих только из железа и углерода, в зависимости от исходной средней концентрации углерода и текущей температуры сплава. Диаграмма железо-углерод позволяет понять процессы, происходящие при термообработке стали.

какое максимальное количество углерода может раствориться в железе с решеткой гцк Диаграмма железо-углерод (железо-цементит). Упрощенная

Структуры на диаграмме железо-углерод

Напомним о 2 кристаллических формах железа:

Полиморфное превращение одной формы в другую при проведении термообработки сталей происходит при прохождении сплавами линии GSK.

Выделим 4 фазы в системе железо-углерод:

В зависимости от условий образования выделяют:

Необходимо так же выделить 2 структурные составляющие железоуглеродистых сплавов:

какое максимальное количество углерода может раствориться в железе с решеткой гцк Структура перлита. Ф — феррит, Ц — цементит

Железо при этом переходит из γ-формы в α-форму. Механические свойства сильно зависят от размера (дисперсности) частичек, из которых состоит данный перлит.

какое максимальное количество углерода может раствориться в железе с решеткой гцк Структура ледебурита. Ц — цементит, А — аустенит.

Повторяясь, напомним, что при прохождении сплавов ниже линии PSK (727°С) аустенит, входящий в состав ледебурита, претерпевает перлитное превращение, разделяясь на феррит и цементит. Ледебурит тверд и хрупок.

При комнатной температуре железоуглеродистые сплавы могут иметь различную структуру, а значит и свойства, хотя и состоят всегда всего из 2 фаз: феррита и цементита.

Некоторые элементы диаграммы железо-углерод

Выделим несколько границ на диаграмме железо-углерод:

Отметим несколько важных точек на диаграмме:

Часто значения температур, при которых происходят структурные изменения конкретного сплава обозначают буквами A:

Поскольку температуры фазовых переходов при нагреве и охлаждении слегка отличаются, то часто вводят дополнительные буквенные обозначения:

Чтение диаграммы железо-углерод

Состав сплава с данным исходным содержанием углерода при заданной температуре мы можем увидеть, двигаясь по вертикальной линии, соответствующей содержанию углерода в сплаве.

Рассмотрим, например, область AEC. С ней соседствуют области аустенита AESG и жидкой фазы. Сплавы в ней состоят из жидкой фазы и образующегося твердого аустенита. Как определить концентрацию углерода в разных фазах для данного сплава? Рассмотрим для примера сплав с исходной концентрацией углерода 2,5% при температуре 1250°С.

Проведем из этой точки графика «2,5% C – 1250°С» горизонтальную прямую. Пересечение этой прямой с линией AE, граничащей с областью аустенита, покажет концентрацию углерода в аустените при данной температуре (

Пересечение этой же горизонтальной прямой с линией AС, граничащей с областью жидкой фазы, покажет концентрацию углерода в жидкой фазе при данной температуре (

Именно таким образом мы можем определить концентрацию углерода в фазах любого сплава при заданной температуре:

Как видим, при концентрации углерода выше 2,14% насыщение охлаждаемого расплава углеродом всегда стремится к 4,3% (по линиям AC и DC) по мере приближения к температуре 1147°С (уровень ECF). Далее происходит превращение жидкости в ледебурит (эвтектику). Естественно, с этим же средним содержанием углерода.

По мере приближения к температуре 727°С (уровень PSK) концентрация углерода в аустените («свободном» и/или входящем в состав ледебурита) стремится к 0,8% (по линиям GS и ES). Далее происходит превращение аустенита в перлит (эвтектоид). Перлит, конечно, имеет среднее содержанием углерода 0,8%.

Классификация железоуглеродистых сплавов

Классификация железоуглеродистых сплавов в зависимости от концентрации углерода в сплаве:

Чугуны же выделяет наличие ледебурита, придающего им хрупкость. Поэтому чугуны не могут подвергаться ковке. Зато обладают лучшими литейными свойствами (чем стали), обусловленными наличием легкоплавкого ледебурита.

Термообработка сталей в ООО КВАДРО

Наше предприятие уже почти четверть века производит на заказ термообработку металлов в Санкт-Петербурге.

Основные виды термической обработки металлов, осуществляемые на нашем предприятии на заказ:

Источник

Учебные материалы

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Углерод растворим в железе в жидком и твердом состоянии, с железом может образовывать химическое соединение — цементит.

На диаграмме ”Fe-C” могут быть четыре фазы:

1) жидкая фаза (Ж); 2) феррит (Ф); 3) аустенит (А); 4) цементит (Ц).

Жидкая фаза — существует выше линии ликвидус. Железо хорошо растворяет углерод, образуя однородную жидкую фазу.

Феррит — твердый раствор внедрения углерода в Fea.

Углерод располагается в решетке a-Fe в центре грани куба. Максимальная растворимость достигает 0,02 % С при 727 0 С. При комнатной температуре максимально растворяется до 0,006 % С. Твердость и механические свойства феррита близки к свойствам технического железа.

Аустенит — твердый раствор внедрения углерода в Feg.

Атом углерода располагается в центре элементарной ячейки. Предельная растворимость углерода в g-Fe 2,14 % при 1147 0 С и 0,8 % при 727 0 С.

Цементит — химическое соединение железа с углеродом Fe3С.

В цементите содержится 6,67 % С. Он имеет сложную орторомбическую решетку, в элементарной ячейке которой находятся 12 атомов железа и 4 атома углерода. Температура плавления цементита точно не определена и составляет около 1500 0 С. Цементит обладает очень высокой твердостью — порядка 800 НВ, хрупкий. До 217 0 С имеет слабые ферромагнитные свойства. По моменту образования в сплаве цементит условно подразделяется на первичный (ЦI) — кристаллизуется из жидкой фазы, вторичный (ЦII) — выделяется из аустенита, третичный (ЦIII) — выделяется из феррита.

Цементит — соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита.

В учебном пособии рассматривается упрощенная диаграмма ”Fe-С” без высокотемпературного участка перитектического превращения (рисунок 29).

Линии на диаграмме:

АСД — ликвидус; АЕСF — солидус; SЕ — линия предельной растворимости углерода в аустените; РQ — линия предельной растворимости углерода в феррите; GS- линия начала вторичной перекристаллизации (при охлаждении) — аустенита в феррит; РG — линия конца вторичной перекристаллизации; S — эвтектоидная точка; РSК — линия эвтектоидного превращения; С — эвтектическая точка; ЕСF — линия эвтектического превращения.

Сплавы на диаграмме:

Эвтектоид представляет собой мелкодисперсную механическую смесь двух фаз — феррита и цементита вторичного (Ф+ЦI) и называется перлитом (П). Эвтектоид образуется при строго определенном количестве углерода в сплаве — 0,8 %. Эвтектоидное превращение (при охлаждении) идет при постоянной температуре (727 0 С):

какое максимальное количество углерода может раствориться в железе с решеткой гцк

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Рисунок 29 — Диаграмма состояния сплавов системы «железо-углерод» и кривые охлаждения

Эвтектика представляет собой мелкозернистую механическую смесь двух фаз – аустенита и цементита первичного (А+ЦI) при 1147 0 С и называется ледебуритом (Л). Эвтектическое превращение идет при постоянной температуре (1147 0 С), когда жидкая фаза имеет строго определенное содержание углерода — 4,3 %:

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Фазовые превращения в сплавах при охлаждении прослеживаются по кривым охлаждения.

Сплав I содержит 0,8 % С и является эвтектоидным. Кристаллизация аустенита начинается в точке 1 и заканчивается в точке 2. До точки S в сплаве не происходит никаких фазовых превращений: сплав просто охлаждается. При температуре 727 0 С (точка S) весь аустенит превращается в перлит. После эвтектоидного превращения феррит содержит 0,02 % С.

По мере охлаждения содержание в нем углерода снижается до 0,006 %. Избыток углерода идет на образование цементита третичного (ЦIII). Структура стали при комнатной температуре перлит. Из-за небольшого количества в сплаве цементит третичный на диаграмме не указывается.

Сплав II является заэвтектоидным. От точки 3 до точки 4 идет кристаллизация аустенита. В точке 4 кристаллизация завершается, и сплав охлаждается без фазовых превращений до точки 5, которая соответствует предельной растворимости углерода в аустените.

По мере охлаждения содержание углерода снижается до 0,8 %. Избыток углерода идет на образование цементита вторичного (ЦII). При температуре 727 0 С идет эвтектоидное превращение (точка 6). В результате охлаждения сплава до комнатной температуры образуется цементит третичный (ЦIII). Структура стали — перлит и цементит вторичный (располагается по границам зерен перлита).

Сплав III является эвтектическим чугуном и содержит 4,3 % С. При охлаждении сплава при температуре 1147 0 С (точка С) вся жидкая фаза превращается в ледебурит, в котором аустенит содержит 2,14 % С. По мере охлаждения содержание в нем углерода снижается до 0,8 %. Избыточный углерод образует цементит вторичный. В точке 7 идет эвтектоидное превращение, а ниже, по мере охлаждения, образуется цементит третичный (ЦIII). Изменение фазового состава эвтектического сплава происходит по схеме

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Структура эвтектического чугуна — ледебурит.

Сплав IV является заэвтектическим сплавом. От точки 8 до точки 9 идет кристаллизация первичного цементита (ЦI). В точке 9 жидкая фаза достигает эфтектической концентрации (4,3 % С) и идет эвтектическое превращение, образуется ледебурит. Превращение ледебурита до комнатной температуры аналогично сплаву III. Структура сплава — иглы первичного цементита и ледебурит.

Все углеродистые чугуны имеют температуру конца кристаллизации ниже, чем углеродистые стали, так как содержат в своем составе эвтектику (ледебурит). Этим определяются высокие литейные свойства чугунов (жидкотекучесть, небольшая усадка и малая склонность к поглощению газов) и отсутствие пластичности из-за повышенного содержания цементита.

Микроструктура железоуглеродистых сплавов приведена на рисунке 31.

Источник

Метастабильная диаграмма состояния железо-углерод – steel-guide

История открытия

Впервые на то, что в сплавах (сталях и чугунах) есть определенные (особые) точки, указал великий металлург и изобретатель – Дмитрий Константинович Чернов (1868 год). Именно он сделал важное открытие о полиморфных превращениях и является одним из создателей диаграммы состояния железо-углерод. По мнению Чернова, положение этих точек на диаграмме имеет прямую зависимость от процентного содержания углерода.

И что самое интересное, именно с момента этого открытия и начинает свою жизнь такая наука, как металлография.

Диаграмма сплавов железа с углеродом является результатом кропотливого труда ученных нескольких стран мира. Все буквенные обозначения главных точек и фаз в диаграмме являются интернациональными.

Понятие диаграммы

Графическое изображение процессов, происходящих в сплаве при изменении температурного режима, концентрации веществ, давления, называется диаграммой состояния. Она позволяет объемно и наглядно увидеть все превращения, происходящие в сплавах.

Структуры на диаграмме железо-углерод

Напомним о 2 кристаллических формах железа:

какое максимальное количество углерода может раствориться в железе с решеткой гцк
Кристаллическая решетка железа
Полиморфное превращение одной формы в другую при проведении термообработки сталей происходит при прохождении сплавами линии GSK.

Выделим 4 фазы в системе железо-углерод:

В зависимости от условий образования выделяют:

Необходимо так же выделить 2 структурные составляющие железоуглеродистых сплавов:

какое максимальное количество углерода может раствориться в железе с решеткой гцк
Структура перлита. Ф — феррит, Ц — цементит

Железо при этом переходит из γ-формы в α-форму. Механические свойства сильно зависят от размера (дисперсности) частичек, из которых состоит данный перлит.

Структура ледебурита. Ц — цементит, А — аустенит.

Повторяясь, напомним, что при прохождении сплавов ниже линии PSK (727°С) аустенит, входящий в состав ледебурита, претерпевает перлитное превращение, разделяясь на феррит и цементит. Ледебурит тверд и хрупок.

При комнатной температуре железоуглеродистые сплавы могут иметь различную структуру, а значит и свойства, хотя и состоят всегда всего из 2 фаз: феррита и цементита.

Значение линий диаграммы состояния системы железо-углерод

Всякая диаграмма состояния показывает условия равновесного сосуществования фаз во взятой системе компонентов.

Полное физико-химическое равновесие между фазами может быть достигнуто только в специальных лабораторных условиях, а на практике некоторым приближением к этому состоянию может быть случай чрезвычайно медленного охлаждения или нагрева сплава с весьма длительными выдержками во времени при любых искомых температурах.

Некоторые элементы диаграммы железо-углерод

Выделим несколько границ на диаграмме железо-углерод:

Отметим несколько важных точек на диаграмме:

Часто значения температур, при которых происходят структурные изменения конкретного сплава обозначают буквами A:

Поскольку температуры фазовых переходов при нагреве и охлаждении слегка отличаются, то часто вводят дополнительные буквенные обозначения:

например, Ac1 или Ar1.

Применение диаграммы состояния железоуглеродистых сплавов

Диаграмму состояния сплавов системы железо—цементит применяют для определения режима термической обработки сплава, температуры нагрева металла под ковку и температурного предела ковки, а также температуры плавления, что необходимо для назначения режима заливки жидкого сплава в формы.

Термическая обработка производится путем нагрева металлических сплавов до определенных температур, выдержки при этих температурах и последующего быстрого или медленного охлаждения с целью изменения свойств сплава в желаемом направлении.

Термическая обработка железоуглеродистых сплавов имеет ряд разновидностей, основанных на том, что неустойчивая при низких температурах структура аустенита в зависимости от скорости охлаждения сплава превращается в структуры, обладающие различными свойствами. Продуктами распада аустенита являются мартенсит, троостит, сорбит и перлит.

Мартенсит — продукт закалки аустенита и его превращения в феррит без выделения углерода из раствора. Поэтому мартенсит — это сильно пересыщенное углеродом α-железо с кпженной кристаллической решеткой. Эго обусловливает высокую его твердость (НВ 600—700) и прочность, повышенную и ость и наличие внутренних напряжений. Эта структура образуется при больших скоростях охлаждения — закалки (180 ÷ сек для углеродистой стали). Мартенсит по своей природе неустойчив и при нагреве до температуры свыше 70° стремится перейти в другие структуры.

Трооститом называется механическая смесь феррита цементита очень высокой степени дисперсности. Твердость троостита НВ 350÷500. Эта структура образуется при скорости закалки углеродистой стали около 80°/сек. Игольчатый троостит иногда называют бейнитом.

Сорбит — это более грубая механическая смесь зерен феррита и цементита, однако достаточно дисперсная. Она с трудом различается под обычным микроскопом. Твердость сорбита 250÷350. Эта структура образуется при скоростях закалки углеродистой стали менее 50°/сек. По сравнению с трооститом copбит имеет более высокую вязкость, а по сравнению с перлитом — большую твердость.

Перлит представляет собой более или менее грубую механическую смесь феррита и цементита. Перлит образуется при малых Скоростях охлаждения стали, нагретой до аустенитного состояния.

Троостит, сорбит и перлит можно получить путем отпуска мартенсита при возрастающих температурах отпуска. В этом случае они имеют отличные, часто более высокие механические свойства, чем при охлаждении аустенита с разными скоростями.

Таким образом, путем изменения режима термической обработки можно получать различные физико-механические свойства и структуры стали. К операциям термической обработки относятся отжиг, нормализация, закалка и отпуск.

Отжиг — фазовая перекристаллизация — заключается в нагреве доэвтектоидной стали выше линии А3, а заэвтектоидной — выше линии Аст с последующим медленным охлаждением вместе с печью. Если нагреть сталь выше А1, но ниже, А3 (или Аст), то полной перекристаллизации не произойдет. Tal кая термическая обработка называется неполным отжигом. При отжиге состояние стали приближается к равновесному. Поэтому структура отожженной стали состоит либо из феррита и перлита (доэвтектоидные стали), либо из перлита и вторичного цементита (заэвтектоидные стали).

Температурные пределы полного отжига, неполного отжига, высокого отпуска и нормализации, нанесенные на участке диаграммы состояния железо — цементит

Отжиг снижает твердость и повышает вязкость стали, улучшает ее обрабатываемость, снимает внутренние напряжения, а также устраняет структурную неоднородность и стабилизирует физические свойства.

Нормализация отличается от отжига повышенной скоростью охлаждения (на спокойном или движущемся воздухе). Нормализацию применяют для размельчения зерна металла и повышения его прочности.

Закалкой называется нагрев стали выше критической точки А3 (рис. 9) с последующим быстрым охлаждением в воде, масле или других охлаждающих средах. Обычно цель закалки — получение мартенситной структуры, подвергаемой затем отпуску. Неполная закалка происходит в случае, если доэвтектоидная сталь была нагрета до температуры, лежащей выше точки Аи но ниже точки А3. Феррит, содержащийся в такой стали наряду с аустенитом, закалки естественно не принимает. Заэвтектоидные стали закаливают с температур выше А1, но ниже Асm, так как нецелеобразно растворять при нагреве твердые включения вторичного цементита.

Температурные пределы ковки и горячей штамповки, нанесенные на участке диаграммы состояния железо — цементит.

При отпуске сталь нагревают до температуры ниже А1, выдерживают при этой температуре и медленно охлаждают вместе с печью. Низкий отпуск (175—250°) служит для повышения язкости стали при сохранении высокого предела прочности и твердости, уменьшения внутренних напряжений и получения более устойчивых структур. Высокий отпуск (до 700°) применяют для повышения пластичности и обрабатываемости стали и снижена прочности и твердости.

Ковку, горячую штамповку и прокатку стали производят при сравнительно высоких температурах. Нагрев стали производят до температуры на 100—150° ниже линии солидуса.

Окончание обработки стали давлением должно происходить и температурах, близких к А3, для доэвтектоидной стали, мшчание процесса при слишком низких температурах ведет к рочечности структуры стали, к снижению ее пластичности, копчание процесса при слишком высоких температурах ведет росту зерна стали (перегрев) и повышению ее хрупкости. Перерой можно исправить термической обработкой (отжигом, нормализацией).

При нагреве стали до температуры, близкой к линии солидуса АЕ, происходит окисление металла вдоль границ зерен, рпультате чего связь между последними нарушается и механическая прочность катастрофически падает. Такое явление называют пережогом, причем его нельзя исправить какой-либо следующей термической обработкой.

Классификация железоуглеродистых сплавов

Различные комбинации этих элементов приводят к получению большого количества сплавов, которые можно разделить на три большие группы:

какое максимальное количество углерода может раствориться в железе с решеткой гцк

К техническому железу относят материалы, в которых содержится менее 0,02% углерода. К сталям относят, материалы, в которых углерод находится в пределах от 0,02 до 2,14%. И в группу чугунов входят материалы, количество углерода в которых превышает 2,14%.

Фазы диаграммы железо-углерод

В системе железо — углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях[источник не указан 1441 день] с образованием однородной жидкой фазы.

Феррит — твёрдый раствор внедрения углерода в α-железе с объёмно-центрированной кубической решёткой.

Феррит имеет переменную, зависящую от температуры предельную растворимость углерода: минимальную — 0,006 % при комнатной температуре (точка Q), максимальную — 0,02 % при температуре 700 °C (точка P). Атомы углерода располагаются в центре грани или (что кристаллогеометрические эквивалентно) на середине рёбер куба, а также в дефектах решетки.

При температуре выше 1392 °C существует высокотемпературный феррит с предельной растворимостью углерода около 0,1 % при температуре около 1500 °C (точка H).

Свойства феррита близки к свойствам чистого железа. Он мягок (твёрдость по Бринеллю — 130 НВ) и пластичен, ферромагнитен (при отсутствии углерода) до точки Кюри — 770 °C.

Аустенит (γ) — твёрдый раствор внедрения углерода в γ-железе с гранецентрированной кубической решёткой.

Цементит (Fe3C) — химическое соединение железа с углеродом (карбид железа), со сложной ромбической решёткой, содержит 6,67 % углерода. Он твёрдый (свыше 1000 HВ), и очень хрупкий. Цементит — метастабильная фаза и при длительном нагреве самопроизвольно разлагается с выделением графита.

В железоуглеродистых сплавах цементит как фаза может выделяться при различных условиях:

Эвтектический цементит наблюдается лишь в белых чугунах. Эвтектоидный цементит имеет пластинчатую форму и является составной частью перлита. Цементит может при специальном сфероидизируюшем отжиге или закалке с высоким отпуском выделяться в виде мелких сфер. Влияние на механические свойства сплавов оказывает форма, размер, количество и расположение включений цементита, что позволяет на практике для каждого конкретного применения сплава добиваться оптимального сочетания твёрдости, прочности, стойкости к хрупкому разрушению и т. п. [5]

Графит — фаза состоящая только из углерода со слоистой гексагональной решёткой. Плотность графита (2,3 г/см3) намного меньше плотности всех остальных фаз (около 7,5—7,8 г/см3) и это затрудняет и замедляет его образование, что и приводит к выделению цементита при более быстром охлаждении. Образование графита уменьшает усадку при кристаллизации, графит выполняет роль смазки при трении, уменьшая износ, способствует рассеянию энергии вибраций.

Графит имеет форму крупных крабовидных (изогнутых пластинчатых) включений (обычный серый чугун) или сфер (высокопрочный чугун).

Графит обязательно присутствует в серых чугунах и их разновидности — высокопрочных чугунах. Графит присутствует также и в некоторых марках стали — в так называемых графитизированных сталях.

Чтение диаграммы железо-углерод

Состав сплава с данным исходным содержанием углерода при заданной температуре мы можем увидеть, двигаясь по вертикальной линии, соответствующей содержанию углерода в сплаве.

Рассмотрим, например, область AEC. С ней соседствуют области аустенита AESG и жидкой фазы. Сплавы в ней состоят из жидкой фазы и образующегося твердого аустенита. Как определить концентрацию углерода в разных фазах для данного сплава? Рассмотрим для примера сплав с исходной концентрацией углерода 2,5% при температуре 1250°С.

Проведем из этой точки графика «2,5% C – 1250°С» горизонтальную прямую. Пересечение этой прямой с линией AE, граничащей с областью аустенита, покажет концентрацию углерода в аустените при данной температуре (

Пересечение этой же горизонтальной прямой с линией AС, граничащей с областью жидкой фазы, покажет концентрацию углерода в жидкой фазе при данной температуре (

Именно таким образом мы можем определить концентрацию углерода в фазах любого сплава при заданной температуре:

Как видим, при концентрации углерода выше 2,14% насыщение охлаждаемого расплава углеродом всегда стремится к 4,3% (по линиям AC и DC) по мере приближения к температуре 1147°С (уровень ECF). Далее происходит превращение жидкости в ледебурит (эвтектику). Естественно, с этим же средним содержанием углерода.

По мере приближения к температуре 727°С (уровень PSK) концентрация углерода в аустените («свободном» и/или входящем в состав ледебурита) стремится к 0,8% (по линиям GS и ES). Далее происходит превращение аустенита в перлит (эвтектоид). Перлит, конечно, имеет среднее содержанием углерода 0,8%.

Свойства технически чистого железа

Магнитные свойства железа при различных температурах:

А температурную точку 768° С называют точкой магнитного превращения, или точкой Кюри.

Свойства технически чистого железа:

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Компоненты в системе железо углерод

Аустенит

Атомы размещается в гранецентрированной ячейке. Твердость аустенита имеет твердость 200 … 250 единиц по Бринеллю. Кроме того у него хорошая пластичность и он отличается парамагнитностью.

Железо

Железо – это материал, относящийся к металлам. Его натуральный цвет – серебристо-серый. В чистом виде он очень пластичен. Его удельный вес составляет 7,86 г/куб. см. Температура плавления составляет 1539 °C. На практике чаще всего применяют техническое железо, в составе которого присутствуют следующие примеси – марганец, кремний и многие другие. Массовая доля примесей не превышает 0,1%.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

У железа есть такое свойство как полиформизм. То есть, при одном и том же химическом составе, это вещество может иметь разную структуру кристаллической решетки и соответственно разные свойства. Модификации железа называют соответственно – Б, Г, Д. Все эти модификации существуют при разных условиях. Например, тип Б, может существовать только при температуре 911 °С. Тип Г может существовать в диапазоне от 911 до 1392 °С. Тип Д существует в диапазоне от 1392 до 1539 °С.

Каждый из типов обладает своей формой кристаллической решеткой, например, у типа Б решетка представляет собой куб, решетка типа Г имеет гранецентрированную кубическую форму. Решетка типа Д, имеет форму объемно центрированного куба.

Еще одно свойство состоит в том, что при температуре ниже 768 железо ферримагнитно, а при ее повышении это свойство теряется.

Точки полиморфной и магнитной трансформации называют критическими. На таблице они обозначены следующим образом – А2, А3, А4. Цифровые индексы показывают тип трансформации. Для более полного различия превращения железа из одного вида в другой к обозначению добавляют индексы с и r. Первый говорит о нагреве, второй об охлаждении.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Полиморфные модификации железа

При высоких параметрах пластичности, железо не обладает высокой твердостью, по шкале Бринелля она равна 80 единиц.

Железо имеет возможность образовывать твердые растворы. Их можно разделить на две группы – раствор замещения и внедрения. Первые состоят их железа и других металлов, вторые из железа и углерода, водорода и азота.

Углерод

Другой компонент системы – углерод. Это – неметалл и он обладает тремя модификациями в виде алмаза, графита и угля. Он плавится при 3500 °С.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Аллотропные модификации углерода

В сплаве железа, этот элемент находится в виде твердого раствора, его называют цементит или в виде графита. В таком виде он присутствует в сером чугуне. Графит, не отличается ни пластичностью, ни прочностью.

Цементит

Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода. Более точные исследования показали, что цементит может иметь переменную концентрацию углерода. Однако в дальнейшем, при разборе диаграммы состояния, сделаем допущение, что Fе3С имеет постоянный состав. Кристаллическая решетка цементита ромбическая, удельный вес 7,82 г/см3 (очень близок к удельному весу железа). При высоких температурах цементит диссоциирует, поэтому температура его плавления неясна и проставляется ориентировочно – 1260° С. Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу. При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 210° С. Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность.

Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: например, азотом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.

Если графит является стабильной фазой, то цементит – это метастабильная фаза. Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.

Первичный цементит

Металлурги разделяют три типа этого вещества – первичный, вторичный, третичный.

Читайте также: Тема 5. Горение веществ и материалов, общие сведения о горении, показатели пожаровзрывоопасности веществ и материалов

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Первичный, получается из жидкости при закалке сплавов, которые содержат в себе 5,5% углерода. Первичный имеет форму в виде крупных пластин.

Вторичный

Этот элемент получается из аустенита при охлаждении последнего. На диаграмме этот процесс этот процесс можно видеть по диаграмме Fe – C. Цементит представлен в виде сетки, размещенной по границам зерен.

Третичный

Этот тип, является производным от феррита. Он имеет форму иголок.

В металлургии существуют и другие формы цементита, например, цементит Стеда и пр.

Другие структурные составляющие в системе железо углерод

Феррит

Так называют твердый раствор, при котором происходит внедрение углерода в железо.

Он растворяется с определенной переменностью, при нормальной (комнатной) температуре объем углерода лежит в пределах 0,006%, при 727 °С, то концентрация углерода составит 0,02%. По достижении 1392 °С образуется феррит.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Содержание углерода составит 0,1%. Его атомы размещаются в дефектных узлах решетки.

Феррит по своим параметрам близок к железу.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Другие структурные составляющие в системе «железо-углерод»

Кроме компонентов и фаз в системе сплавов «железо-углерод» присутствуют другие структурные составляющие — перлит и ледебурит.

Перлит

Перлит — эвтектоид, механическая смесь феррита и цементита, полученная в результате распада аустенита при охлаждении сплавов ниже 727° С. При медленном охлаждении перлит присутствует во всех сплавах с концентрацией углерода от 0,02 до 6,67%. Под микроскопом перлит может выглядеть либо как пластины, либо как зерна — зернистый перлит. Его вид, также как и механические свойства, зависит от скорости охлаждения сплава и вида его термической обработки.

Ледебурит в сталях

Ледебурит — эвтектика, механическая смесь аустенита и цементита, выделяющаяся из жидкости при охлаждении сплавов ниже 1147° С. Принципиальное отличие эвтектикой составляющей от эвтектоидной заключается в том, что первая выделяется из жидкости, а вторая из твердого раствора, в случае железоуглеродистых сплавов — из аустенита. Название данная структурная составляющая получила в честь имени немецкого ученого-металлурга Ледебура.

Чугуны

Сплавы на диаграмме железо-углерод, которые содержат углерода более, чем 2,14 %, называются чугунами. Они обладают высокой хрупкостью. Поперечное сечение такого чугуна имеет светлый тон, а потому его называют белым чугуном.

На диаграмме это точка С, называемая эвтектикой, с соответствующим содержанием углерода 4,3 %. При кристаллизации образуется смесь, состоящая из аустенита и цементита, в совокупности называемая ледебуритом. Фазовый состав постоянен.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

При концентрации углерода менее 4,3 % (доэвтектический чугун) при кристаллизации выделяется аустенит из раствора. Далее из него выделяется Ц2. А при 727° С аустенит превращается в перлит. Структурное состояние такого чугуна следующее: крупные участки перлита темного тона.

В заэвтектическом белом чугуне (углерода более 4,3%) при охлаждении структурирование происходит с образованием кристаллов Ц1. Далее превращения осуществляются уже в твердом состоянии. Структура представляет собой ледебурит, который является фоном для полей перлита темного тона. А крупные пласты – это Ц1.

какое максимальное количество углерода может раствориться в железе с решеткой гцк

Выводы

Достичь абсолютного равновесия, как физического, так и химического, невозможно, кроме как в специальных лабораторных условиях.

На практике равновесие может быть приближено к абсолютному, но при определенных условиях: достаточно медленного повышения или понижения температуры сплава, который будет длительно выдерживаться по времени.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *