какое движение называют сложным

Сложное движение

В физике, при рассмотрении нескольких систем отсчёта (СО) возникает понятие сложного движения — когда материальная точка движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух системах отсчета (далее СО).

Содержание

Геометрия задачи

какое движение называют сложным

какое движение называют сложным

Обычно выбирают одну из СО за базовую («абсолютную», «лабораторную», «неподвижную», «СО неподвижного наблюдателя, «первую», «нештрихованную» и т. п.), другую называют «подвижной» («СО подвижного наблюдателя», «штрихованную» «вторую» и т. п.) и вводят следующие термины:

[2] Также вводятся понятия соответствующих скоростей и ускорений. Например, переносная скорость — это скорость точки, обусловленная движением подвижной системы отсчёта относительно абсолютной. Другими словами, это скорость точки подвижной системы отсчёта, в данный момент времени совпадающей с материальной точкой.

С точки зрения только чистой кинематики (задачи пересчета кинематических величин — координат, скоростей, ускорений — от одной системы отсчета к другой), являющейся в сущности предметом просто математического анализа, не имеет значения, является ли какая-то из систем отсчета инерциальной или нет; это никак не сказывается на формулах преобразования кинематических величин при переходе от одной системы отсчета к другой (то есть эти формулы можно применять и для перехода от одной произвольной неинерциальной вращающейся системы отсчета к другой).

Однако для динамики инерциальные системы отсчета (или, для практики, системы отсчета, которые можно в достаточно хорошем приближении считать инерциальными) имеют выделенное значение: в них динамические уравнения имеют гораздо более простую запись и обычно (именно поэтому) формулируются изначально именно для инерциальных систем отсчета. Поэтому особенно важны случаи перехода от инерциальной системы отсчета к другой инерциальной, а также от инерциальной к неинерциальной и обратно; последнее позволяет кроме прочего получить при желании и динамические уравнения в виде, верном для неинерциальной системы отсчета, исходя из их простой (изначальной) формулировки, сделанной для инерциальных систем отсчета.

В дальнейшем изложении, по умолчанию, для тех случаев, когда это существенно, базовая СО предполагается инерциальной, а на подвижную никаких ограничений не накладывается.

Классическая механика

Кинематика сложного движения точки

Представлен изменением радиуса вектора, рассматриваемого в виде суммы векторов переносного и относительного движений

какое движение называют сложным(1)

Скорость

Основные задачи кинематики сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, то есть:

какое движение называют сложным

какое движение называют сложным.

Ускорение

Связь ускорений можно найти путём дифференцирования связи для скоростей, не забывая, что координатные векторы подвижной системы координат также могут зависеть от времени.

Положение материального тела в условно неподвижной и инерциальной системе задаётся здесь вектором какое движение называют сложным, а в неинерциальной системе — вектором какое движение называют сложным. Положение начала координат второй системы отсчета в первой системе отсчета определяется вектором какое движение называют сложным. Угловая скорость вращения неинерциальной системы отсчета относительно инерциальной задаётся вектором какое движение называют сложным. Линейная относительная скорость тела по отношению к неинерциальной (вращающейся) системе отсчета ( считая ее при этом неподвижной ) задаётся вектором какое движение называют сложным.

Тогда ускорение какое движение называют сложнымв инерциальной системе отсчета будет равно сумме:

какое движение называют сложным

Кинематика сложного движения тела

какое движение называют сложным

какое движение называют сложным

Кинематика движения, основанная на анализе траектории движущегося тела в общем случае не даёт полной информации для классификации этих движений. Так, движение по прямой в неинерциальной системе отсчёта может быть криволинейным (и, следовательно, обусловленным действующими на тело силами) в инерциальной СО. И, наоборот, прямолинейное в инерциальной СО может быть криволинейным (См. Рис.2) в не инерциальной, и, следовательно, провоцировать представление о якобы действующих на тело силах.

Согласно Первому закону Ньютона все виды движений при их рассмотрении в инерциальной системе координат могут быть отнесены к одной из двух категорий. А именно — к категории прямолинейных и равномерных (то есть имеющих постоянную скорость) движений, возможных исключительно при отсутствии нескомпенсированных сил, действующих на тело.

какое движение называют сложным

какое движение называют сложным

К другой категории относятся все остальные виды движений.

Для твёрдого тела, когда все составные (то есть относительные и переносные) движения являются поступательными, абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. В общем случае движение будет слагаться из серии мгновенных винтовых движений.

Рассчитать взаимосвязь скоростей разных точек твёрдого тела в разных системах отсчёта можно с помощью комбинирования формулы сложения скоростей и формулы Эйлера для связи скоростей точек твёрдого тела. Связь ускорений находится простым дифференцированием полученного векторного равенства по времени.

Динамика сложного движения точки

какое движение называют сложным

какое движение называют сложным

Концепция Ньютона о пропорциональности получаемого телом ускорения под действием любой силы выполняется всегда. Альтернатив этой концепции в классическом разделе материалистической физики нет. Однако при рассмотрении движений в неинерциальной системе отсчёта, наряду с силами, происхождение которых можно проследить как результата взаимодействия с другими телами и полями, невозможно не учитывать и силы инерции, имеющие место в системе отсчёта вследствие её неинерциальности. Нередко эти силы называют фиктивными, но не по причине их отсутствия в действительности, а по причине их происхождения. [5]

Однако по Ньютону все силы проявляют себя одинаково (механически) и их происхождение в формулировке законов никак не отражено. [6]

Примером вполне реальной фиктивной силы инерции является широтный эффект ослабления силы тяжести по мере приближения к экватору, который отражается, например, на замедлении хода маятниковых часов.(Рис.4)

Сила Кориолиса, вызывающая неодинаковость размыва берегов рек, текущих в меридиональном направлении, также есть фиктивная сила инерции [7]

Релятивистская механика

Скорость

При скоростях, близких к скорости света, преобразования Галилея не являются точно инвариантными и классическая формула сложения скоростей перестаёт выполняться. Вместо этого, инвариантными являются преобразования Лоренца, а связь скоростей в двух инерциальных СО получается следующей: какое движение называют сложным

в предположении, что скорость какое движение называют сложнымнаправлена вдоль оси х системы S. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Однако вводится величина — быстрота — которая аддитивна при переходе от одной СО к другой.

Неинерциальные СО

Связь скоростей и ускорений в системах отсчёта, движущихся друг относительно друга ускоренно, является значительно более сложной и определяется локальными свойствами пространства в рассматриваемых точках (зависит от производной тензора Римана).

Источник

Теоретическая механика

19. Сложное движение точки. Относительное, переносное и абсолютное движение точки.

Относительное, переносное и абсолютное движение точки

Выберем две системы отсчета – неподвижную и подвижную системы отсчета. Например, баржа, движущаяся относительно неподвижного берега (неподвижная система координат, связанная с неподвижным берегом) и человек идущий по движущейся барже (подвижная система координат, связанная с движущейся баржей).

Движение точки относительно подвижной системы отсчета называется относительным движением точки.

Движение точки вместе с подвижной системой отсчета относительно неподвижной системы отсчета называется переносным движением точки.

Движение точки относительно неподвижной системы отсчета называется абсолютным или сложным движением точки.

Очевидно, что скорость и ускорение движущейся точки связаны с выбором системы отсчета, относительно которой исследуется движение. Поэтому логично предположить, что производная по времени от радиус-вектора движущейся точки также будет связана с выбором системы отсчета. Для количественного отражения этой связи необходимо определить производную по времени в различных системах отсчета.

Абсолютная и относительная производные от вектора

Пусть наблюдатель связан с подвижной системой координат (рис.К.16).

какое движение называют сложным

Тогда радиус-вектор какое движение называют сложным движущейся точки в подвижной системе координат может быть представлен в виде какое движение называют сложным

Для наблюдателя, связанного с подвижной системой координат, орты какое движение называют сложным не меняют свое направление, поэтому можно записать

Таким образом, можно записать, что

какое движение называют сложным

какое движение называют сложным

какое движение называют сложным

какое движение называют сложным

Выражение (К.15) является записью абсолютной производной вектора какое движение называют сложным по времени какое движение называют сложным равной сумме относительной производной какое движение называют сложным и векторного произведения какое движение называют сложным

Источник

Сложное движение

Связанные понятия

При рассмотрении сложного движения (когда точка или тело движется в одной системе отсчёта, а эта система отсчёта в свою очередь движется относительно другой системы) возникает вопрос о связи скоростей в двух системах отсчёта.

Упоминания в литературе

Связанные понятия (продолжение)

Комплекс задач о взаимодействии многих тел достаточно обширный и является одним из базовых, далеко не полностью разрешённых, разделов механики. В рамках ньютоновской концепции проблема ветвится на.

Принципами механики называются исходные положения, отражающие столь общие закономерности механических явлений, что из них как следствия можно получить все уравнения, определяющие движение механической системы (или условия её равновесия). В ходе развития механики был установлен ряд таких принципов, каждый из которых может быть положен в основу механики, что объясняется многообразием свойств и закономерностей механических явлений. Эти принципы подразделяют на невариационные и вариационные.

В физике и математике, в отрасли динамических систем, двойной маятник — это маятник с другим маятником, прикреплённым к его концу. Двойной маятник является простой физической системой, которая проявляет разнообразное динамическое поведение со значительной зависимостью от начальных условий. Движение маятника руководствуется связанными обыкновенными дифференциальными уравнениями. Для некоторых энергий его движение является хаотическим.

Источник

Сложное движение точки. Теорема Кориолиса

Здесь мы покажем, что при сложном движении, абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова (поворотного) ускорений:
,
где – кориолисово ускорение.

Пример применения изложенной ниже теории приводится на странице “Сложное движение точки. Пример решения задачи”.

Сложное (составное) движение точки

Часто встречаются случаи, когда точка совершает известное движение относительно некоторого твердого тела. А это тело, в свою очередь, движется относительно неподвижной системы координат. Причем движение точки относительно тела и закон движения тела относительно неподвижной системы координат известны или заданы. Требуется найти кинематические величины (скорость и ускорение) точки относительно неподвижной системы координат.

Такое движение точки называется сложным или составным.

Сложное или составное движение точки – это движение в подвижной системе координат. То есть движение точки описывается в системе координат, которая сама совершает движение относительно неподвижной системы координат.

Далее, для ясности изложения, будем считать, что подвижная система координат жестко связана с некоторым твердым телом. Мы будем рассматривать движение точки относительно тела (относительное движение) и движение тела относительно неподвижной системы координат (переносное движение).

Относительное движение точки при сложном движении – это движение точки относительно тела (подвижной системы координат) считая, что тело покоится.

Переносное движение точки при сложном движении – это движение точки, жестко связанной телом, вызванное движением тела.

Абсолютное движение точки при сложном движении – это движение точки относительно неподвижной системы координат, вызванное движением тела и движением точки относительно тела.

какое движение называют сложным

Относительная скорость и ускорение

Относительная скорость точки при сложном движении – это скорость точки при неподвижном положении тела (подвижной системы координат), вызванная движением точки относительно тела.

Относительное ускорение точки при сложном движении – это ускорение точки при неподвижном положении тела, вызванное движением точки относительно тела.

Переносная скорость и ускорение

Переносная скорость точки при сложном движении – это скорость точки, жестко связанной с телом, вызванная движением тела.

Переносное ускорение точки при сложном движении – это ускорение точки, жестко связанной с телом, вызванное движением тела.

Подставляем в (4):

.
Таким образом, выражение (4) приводит к формуле для скорости точек твердого тела.

Выполняя подобные преобразования над формулой (5), получим формулу для ускорения точек твердого тела:
,
где – угловое ускорение тела.

Абсолютная скорость и ускорение

Абсолютная скорость точки при сложном движении – это скорость точки в неподвижной системе координат.

Абсолютное ускорение точки при сложном движении – это ускорение точки в неподвижной системе координат.

Теорема о сложении скоростей

При составном движении абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Доказательство

Дифференцируем (1) по времени, применяя правила дифференцирования суммы и произведения. Затем подставляем (2) и (4).
(1) ;
(7)
.

Теорема Кориолиса о сложении ускорений

При составном движении абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова (поворотного) ускорений:
,
где
– кориолисово ускорение.

Доказательство

В последнем члене применим (6) и (2).

.
Тогда
.

Источник

iSopromat.ru

какое движение называют сложным

В теории сложного движения точек и твердых тел принято считать, что движение точки относительно основной или неподвижной системы отсчета состоит из двух или нескольких более простых движений. Для этого, вводят в рассмотрение вторую (а при необходимости и последующие) подвижную систему отсчета.

Сложным, называют движение точки или твердого тела, рассматриваемое одновременно в неподвижной и подвижной системах отсчета.

Основные понятия и определения

При решении многих инженерных задач приходится рассматривать движение точки по отношению к некоторому твердому телу, которое в свою очередь движется.

При математическом описании такого сложного движения вводится неподвижная система отсчета и система отсчета жестко связанная с движущимся твердым телом, т.е. подвижная система отсчета. Тогда движение точки относительно подвижной системы отсчета называется относительным движением.

Движение твердого тела и неизменно связанной с ним подвижной системы отсчета относительно неподвижной системы называется переносным движением, а движение точки относительно неподвижной системы – абсолютным движением.

Переносной скоростью и переносным ускорением называется скорость и ускорение той точки твердого тела или подвижной системы отсчета, в которой в данный момент находится движущаяся точка.

Пример сложного движения

Рассмотрим пример, показанный на рис. 1. Диск вращается вокруг оси, проходящей через центр диска перпендикулярно к его плоскости, с угловой скоростью ω. Введем подвижную систему отсчета xOy, которая вращается вместе с диском.

какое движение называют сложным

По радиусу диска движется точка M по закону OM = s(t).

Таким образом, точка M участвует в двух движениях. Движется относительно диска по радиусу (относительное движение) и, вместе с диском, вращается вокруг оси, проходящей через центр диска (переносное движение).

Относительной скоростью и относительным ускорением точки M будет являться скорость и ускорение в движении вдоль радиуса диска. Переносной скоростью и переносным ускорением будет являться скорость и ускорение той точки диска, в которой в данный момент находится точка M.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *