какое деформирование металла называют холодным
Виды пластической деформации.
Пластическая деформация металлов, виды и определения
Обработка металлов давлением это деформация. Многие помнят закон Гука из школьной программы. Так существует упругая и пластическая деформация. В нашем случае, поговорим о пластической. Как нас учил проф. д.т.н. Осадчий В.Я. на лекциях по теории обработки металлов давлением (ТОМД) на сегодняшний день подразделяют на:
При холодной деформации происходит упрочнение металла, при этом возврат и рекристализация не происходит. Иными словами при холодной деформации разупрочнение не происходит, а также не происходит залечивания нарушений внутри и межзеренных, так как не действуют механизмы термической пластичности. В результате холодной деформации прочность увеличивается, а пластичность и плотность уменьшаются, металл охрупчивается. При деформации металла с высокой степенью образуется текстура; происходит изменение физических свойств металла. Холодная происходит при температуре ниже чем 0.3 tпл.(температура плавления).
При деф-ции металлов на горячую разупрочняется с такой скоростью, при которой не происходит упрочнения в результате деформации. Металл уплотняется, литая структура разрушается, образуются новые рекристаллизованные равноосные зерна; нарушения границ зерен и блоков залечиваются в результате действия механизмов термической пластичности. Степень деформации и скорость деформации (извините за тавтологию, но сказать по другому не получается) оказывают существенное влияние. Так при малых скоростях, степенях деформации и при температуре 0,7 tпл. происходит горячая деф-ция металлов. Практически трудно создать условия для холодной и горячей обработки давлением в чистом виде.
Поэтому при обработке давлением металлов часто наблюдаются неполная холодная и неполная горячая деформации. Неполная холодная деф. подразумевает, что наряду с упрочнением происходит частичное разупрочнение в результате возврата, вызванного разогревом из-за выхода тепла. Для металла после неполной холодной деф. характерны свойства металла, получившего низкотемпературную обработку после холодной деформации. Для процесса неполной холодной деформации температура находится в пределе от 0.3 до 0.5 tпл. К неполной холодной деформации можно отнести так называемую теплую, при которой металл нагревают от внешних источников.
Теплая прокатка тонких листов и лент и теплое волочение применяют при обработке труднодеформируемых сплавов, имеющих сопротивление деф-ции и пониженную пластичность. Подогрев до невысоких температур при теплой, не вызывая окисления поверхности, что характерно для горячей, несколько снижает сопротивление деформации и, что очень важно, повышает пластичность из-за появления новых систем скольжения. В конечном итоге при неполной горячей деформации металлов рекристаллизация, разупрочнение проходят не полностью. Таким образом структура металла получается рекристаллизованной с наличием деформированной. Температура неполной горячей соответствует от 0.5 до 0.7 tпл.
Неполная горячая из-за неоднородности структуры приводит к пониженным механическим свойствам и поэтому нежелательна. Приведенные выше температурные интервалы видов деформации являются ориентировочными. Вид деформации зависит не только от температурного режима, но и от степени и скорости деформации. Так, при высокой степени и скорости при начальной температуре металла значительно ниже 0,3 tпл деф-ция получается неполной холодной. Для нее характерны частичное разупрочнение в результате большого выхода тепла из-за высокой степени деформации и малые потери тепла из-за высокой скорости деформации. Горячая деф-ция с высокими степенями и скоростями будет неполной, так как упрочнение в результате деформации происходит и при температурах выше 0,7 tпл.
Влияние степени и скорости деформации на упрочнение при деф-ции на горячую особенно сильно проявляется при обработке сплавов с пониженной скоростью и повышенной температурой рекристаллизации. Это характерно, например, для нержавеющих сталей аустенитного класса. Такие сплавы имеют высокое динамическое сопротивление деформации. Грамотным термомеханическим режимом при деформации на горячую необходимо добиваться отсутствия упрочнения и полной рекристаллизации в результате пластической деформации, но при данном процессе деформации упрочнение неизбежно.
Рассмотренные температурные условия разных видов деформации позволяют уточнить понятия «холодная и горячая деформации». Температурный интервал того или иного вида деформации зависит от температуры плавления. Принимать деф-цию без нагрева (при комнатной температуре) за холодную нельзя. Допустим, что происходит деф-ция олова, свинца и технического железа без нагрева при 25С. Определим сходственные (гомологические) температуры этих металлов при 25С, принимая температуру плавления олова 505К (232С), свинца 600К (327С) и железа 1800К (1530С). Тогда получаем сходственные температуры: для олова- 0,59 tпл, для свинца- 0,5 tпл, для железа это 0,165 tпл. Получается, что температура 25С для олова и свинца является горячей неполной деформации, а для железа (при малых степенях и скоростях деформации)- температурой холодной. Это подтверждают экспериментальные данные. Так, олово и свинец не наклепываются при обработке давлением при комнатной температуре. Скорость деф-ции оказывает существенное влияние на сопротивление деформации, т.е. олово и свинец ведут себя, как железо, при температуре от 0.5 до 0.6 tпл, равных 900-1080 К (630-810С).
Простые виды пластической деформации:
Делаем долго,дорого,качественно и очень красиво.
Евдокимов © 2010-2021.
Пластическая деформация материалов
Пластическая деформация – эффективный инструмент формирования структуры различных материалов. На ее особенностях основаны технологии обработки давлением, придание материалам особых свойств, создание наноматериалов.
Понятие деформации
Под термином «деформация» понимаются любые изменения структуры, формы, размеров тел. Она происходит под влиянием напряжений — сил, которые действуют на единицу площади сечения заготовок или деталей. Деформация металла обусловлена:
Примеры прилагаемых к телу нагрузок:
Механизм и виды деформирования изучаются материаловедением, физикой твердого тела, кристаллографией.
Твердые тела подвержены двум видам деформации:
В таблице приведены сравнительные характеристики этих явлений.
Критерий сравнения | Виды | |
Упругая | Пластическая (остаточная, необратимая) | |
Поведение атомов кристаллической решетки под нагрузками | · сдвигаются на промежутки меньшие, чем межатомное расстояние; · блоки кристалла поворачиваются незначительно | · перемещаются на расстояния, большие межатомных; · в структуре возникают остаточные изменения; · нет макроскопических нарушений сплошности металла |
Деформирование формы и структуры после прекращения нагрузки | устраняется полностью | не устраняется |
Вызывается действием напряжений | · нормальных; · невысоких касательных | больших касательных |
Показатели сопротивления | модуль упругости | теоретическая прочность |
Результат развития | необратимость наступает, когда напряжения достигают предела упругости; упругая переходит в пластическую. | возможность вязкого разрушения путем сдвига. |
Пластическое деформирование ведет к модификациям в структурах металлов и их сплавов, а, следовательно, к изменениям их свойств.
Механизм возникновения
Возникновение пластической деформации обусловлено процессами, имеющими кристаллографическую природу: скольжением; двойникованием; межзеренным перемещением.
Скольжение
Происходит под воздействием касательных напряжений. Проявляется в виде перемещения одной части кристалла относительно другой. Этот процесс, в пределах кристалла, называется линейной дислокацией. Когда линейная дислокация выходит из кристалла, на его поверхности возникает ступенька, равная одному периоду решетки. Увеличение напряжения ведет к перемещению новых атомных плоскостей. Образуются новые ступеньки единичных сдвигов на поверхности кристалла. Чтобы дислокация продвинулась, не требуется разрывать все атомные связи в плоскости скольжения. Межатомная связь разрывается только в краевой зоне дислокации.
Современная теория основана на положениях:
Одно из свойств металла – теоретическая прочность. Ее используют для характеристики сопротивления пластическому деформированию. Она определяется силами межатомных связей в кристаллических решетках и значительно превышает реальную. Так для железа прочность:
Различие вызвано тем, что для движения дислокации разрушаются лишь связи между атомами, находящимися у края дислокации, а не все атомные связи. Для этого необходимы меньшие усилия.
Двойникование
Это процесс образования в кристалле областей с закономерно измененной ориентацией кристаллической структуры. Двойникованием достигается незначительная степень деформации.
Двойниковые образования возникают по одному из двух механизмов:
Двойникование свойственно кристаллам, имеющим решетки:
Склонность к нему повышается при увеличении скорости деформации и снижении температуры.
Двойникование в металлах с кубической гранецентрированной решеткой (алюминий, медь) — результат отжига заготовки, которая подверглась пластическому деформированию.
Межзеренное перемещение
Такое изменение структуры материала идет вод воздействием растягивающего усилия. Процесс, в первую очередь, начинается в зерне, в котором направление легкого скольжения совпадает с направлением действия нагрузки. Это зерно будет растягиваться. Соседние зерна при этом будут разворачиваться до того момента, когда в них направление легкого скольжения также совместится с направлением силы. После они начнут деформироваться.
Результат межзеренного перемещения – волокнистая структура материала. Его механические свойства неодинаковы в разных направлениях:
Эта разница свойств называется анизотропия
Виды пластической деформации
В зависимости от температуры и скорости процесса различают такие виды пластической деформации:
Одно из определяющих понятий — температура рекристаллизации. Она соответствует наименьшей температуре нагрева, при которой возможно возникновение новых зерен и определяется температурой плавления металла по формуле:
Холодная деформация. Наклеп
Холодная деформация проходит при температурах, ниже tрек. В ее результате возникает искажение кристаллической структуры материала. Все зерна растягиваются в одном направлении. Растет прочность, а свойства пластичности снижаются. Это упрочнение называется наклеп (нагортовка). Он может быть:
Причина наклепа заключается в развороте плоскостей скольжения и усилении искажений кристаллической решетки. Упрочненный, наклепанный металл быстро вступает в химические реакции, хорошо корродирует и склонен к коррозионному растрескиванию. Деформировать его затруднительно. Но наклеп повышает свойство сопротивления усталости.
В прокатном производстве этот тип деформации применяется для обработки давлением пластичных металлов, заготовок с малым сечением. Такие методы, как штамповка и волочение, позволяют достичь требуемой чистоты поверхности и обеспечить точность размеров.
Устранить изменения в структуре, которые появляются при холодной деформации, возможно термообработкой (отжигом).
При отжиге подвижность атомов повышается. В металле из множественных центров вырастают новые зерна, которые заменяют вытянутые, деформированные. Они характеризуются одинаковыми размерами во всех направлениях. Это эффект называется рекристаллизацией.
Горячая деформация
Горячая деформация имеет такие характерные признаки:
Благодаря этим обстоятельствам, технологии горячей деформации применяются при обработке давлением крупных заготовок, малопластичных и сложно деформируемых материалов, литых заготовок. При этом используется оборудование меньшей мощности, чем для холодной деформации.
Недостаток процесса — возникновение окалины на поверхности заготовок. Это снижает показатели качества и возможность обеспечения требуемых размеров.
Процессы, после которых структура образцов рекристаллизована частично с признаками упрочнения, называются неполной горячей деформацией. Она является причиной неоднородности структуры металла, пониженных механических и пластических характеристик. Регулированием соответствия скорости деформирующего воздействия и рекристаллизации, можно достичь условий, при которых рекристаллизация распространится во всем объеме обрабатываемой заготовки.
Рекристаллизация начинается после окончания деформирования. При значительных температурах описанные явления происходят за секунды.
Таким образом, особенности воздействия холодной деформации используются для улучшения рабочих характеристик изделий. Сочетанием горячей и холодной деформаций, режимов термообработки можно воздействовать на изменение этих свойств в требуемых пределах.
Интенсивная пластическая деформация
Получить беспористые объемные металлические наноматериалы можно технологиями интенсивной пластической деформации (ИПД). Их суть заключается в деформировании металлических заготовок:
Это обеспечивает формирование гомогенной наноструктуры с большеугловыми границами зерен. Вопреки интенсивному воздействию, образцы не должны получать механические повреждения и разрушаться.
Первые работы по созданию наноматериалов выполнены в 80х-90х годах ХХ века с использованием методов кручения и разноканального прессования. Первый метод применим для небольших образцов – получаются пластинки диаметром 10…20 мм и толщиной до 0,5 мм. Для того чтобы получить массивные наноконструкции используется второй метод, в основу которого положена деформация сдвигом.
Методы пластической деформации позволяют получать заготовки из стали, сплавов цветных металлов и других материалов (резина, керамика, пластмассы).
Они высокопроизводительные, позволяют обеспечить требуемое качество получаемых изделий, улучшить их механические свойства.
37 Холодная и горячая деформация
3.4-5 Холодная и горячая деформация. Нагрев металла при обработке давлением : дефекты, возможные при нагреве заготовок.
Изменение структуры и свойств металла при обработке давлением определяется температурно-скоростными словиями деформирования, в зависимости от которых различают холодную: горячую деформацию.
Холодная деформация характеризует-ся изменением формы зерен, которые вытягиваются в направлении наиболее интенсивного течения металлов (рис. 3.1, а). При холодной деформации формоизменение сопровождается изменением механических и физико-химических свойств металла. Это явление называют упрочнением (наклепом). Изменение механических свойств состоит в том, что при холодной пластической деформации по мере ее увеличения возрастают характеристики прочности, в то время как характеристики пластичности снижаются. Металл становится более твердым, но менее пластичным. Упрочнение возникает вследствие поворота плоскостей скольжения, увеличения искажений кристаллической решетки в процессе холодного деформирования (накопления дислокаций у границ зерен).
Изменения, внесенные холодной деформацией в структуру и свойства металла, не необратимы. Они могут быть устранены, например, с помощью термической обработки (отжигом). В этом случае происходит внутренняя перестройка, при которой за счет дополнительной тепловой энергии, увеличивающей подвижность атомов, в твердом металле без фазовых превращений из множества центров растут новые зерна, заменяющие собой вытянутые, деформированные зерна. Так как в равномерном температурном поле скорость роста зерен по всем направлениям одинакова, то новые зерна, появля- ющиеся взамен деформированных, имеют примерно одинаковые размеры по всем направлениям.
Явление зарождения и роста новых равноосных зерен взамен деформированных, вытянутых, происходящее при определенных температурах, называется рекристаллизацией. Для чистых металлов рекристаллизация начинается при абсолютной температуре, равной 0,4 абсолютной температуры плавления металла. Рекристаллизация протекает с определенной скоростью, причем время, требуемое для рекристаллизации, тем меньше, чем выше температура нагрева деформированной заготовки.
При температурах ниже температуры начала рекристаллизации, наблюдается явление, называемое возвратом. При возврате (отдыхе) форма и размеры деформированных, вытянутых зерен не изменяются, но частично снимаются остаточные напряжения. Эти напряжения возникают из-за неоднородного нагрева или охлаждения (при литье и обработке давлением), неоднородности распределения деформаций при пластическом деформировании и т. д. Остаточные напряжения создают системы взаимно уравновешивающихся сил и находятся в заготовке, не нагруженной внешними силами. Снятие остаточных напряжений при возврате почти не изменяет механических свойств металла, но влияет на некоторые его физико-химические свойства. Так, в результате возврата значительно повышается электрическая проводимость, сопротивление коррозии холод-нодеформированного металла.
Формоизменение заготовки при температуре выше температуры рекристаллизации сопровождается одновременным протеканием упрочнения и рекристаллизации.
Горячей деформацией называют деформацию, характеризующуюся таким соотношением скоростей деформирования и рекристаллизации, при котором рекристаллизация успевает произойти во всем объеме заготовки и микро-
структура после обработки давлением оказывается равноосной, без следов упрочнения (рис. 3.1, б).
холодная деформация
Полезное
Смотреть что такое «холодная деформация» в других словарях:
холодная деформация — Пластин. деформация, при к рой происходит упрочнение и отсутствует разупрочнение. Если деформац. упрочнение сопровожд. возвратом, то говорят о неполной х. д. или теплой деформации. Деформацию сталей при комн. или близкой к ней темп ре относят к х … Справочник технического переводчика
Холодная деформация — обработка металла давлением, осуществляемая при комнатной или незначительно отличающейся от неё температуре. Характеризуется изменением формы отдельно взятого зерна. Зерна вытягиваются в направлении течения металла, образуя строчечную… … Википедия
холодная деформация — 3.16 холодная деформация (cold work): Пластическая деформация металла при температуре и скорости деформации, вызывающих деформационное упрочнение (обычно, но не обязательно) при комнатной температуре. Источник … Словарь-справочник терминов нормативно-технической документации
холодная формовка и холодная деформация — 3.3.4 холодная формовка и холодная деформация (cold forming and cold finishing): В данном контексте холодная формовка это процесс преобразования листового или рулонного проката в трубу без нагрева. Холодная деформация является рабочей операцией… … Словарь-справочник терминов нормативно-технической документации
Деформация — [deformation; strain] (от лат. deformatio искажение) 1. Изменение размеров и/или формы тела, вызанное взаимным смещением его частиц под влиянием механической нагрузки и других воздействий (термических, электрических, магнитных и др.). Деформация… … Энциклопедический словарь по металлургии
холодная пластическая деформация — Процесс, осуществляемый при таких температурах, когда в структуре возникает явление наклепа. Термин «холодная» условен и зависит от абсолютной температуры плавления данного металла или сплава. А.А. Бочвар показал: холодная… … Справочник технического переводчика
холодная сварка осадкой — Холодная сварка давлением, при которой с помощью зажимов создается требуемая деформация и течение металла (см. рисунок 9). 1 заготовка; 2 сварной шов; 3 зажимы Рисунок 9 Холодная сварка осадкой [ГОСТ Р ИСО 857 1 2009] Тематики сварка, резка,… … Справочник технического переводчика
Холодная сварка — 55. Холодная сварка Сварка давлением при значительной пластической деформации без нагрева свариваемых частей внешними источниками тепла Источник: ГОСТ 2601 84: Сварка металлов. Термины и определения основных понятий оригинал документа … Словарь-справочник терминов нормативно-технической документации
Холодная штамповка — Обработка металлов давлением технологический процесс формообразования изделия без изменения исходной массы заготовки путем её пластического деформирования. Содержание 1 Виды обработки металлов давлением 1.1 Прокатка 1.2 Прессование … Википедия
холодная сварка осадкой — 4.1.6.2 холодная сварка осадкой: Холодная сварка давлением, при которой с помощью зажимов создается требуемая деформация и течение металла (см. рисунок 9). 1 заготовка; 2 сварной шов; 3 зажимы Рисунок 9 Холодная сварка осадкой Источник … Словарь-справочник терминов нормативно-технической документации
Большая Энциклопедия Нефти и Газа
Холодная деформация металла сопровождается интенсивным упрочнением с образованием больших остаточных напряжений. Прочность металла в результате холодной деформации резко увеличивается, а пластичность сущест-ственно уменьшается. [1]
При холодной деформации металла образуется текстура и происходит его упрочнение, в результате чего металл находится в неравновесном состоянии с повышенной свободной энергией. Наклепанный металл стремится самопроизвольно перейти в более равновесное состояние с меньшей свободной энергией. Восстановительные процессы ( или разупрочнение) сводятся в основном к снятию искажений и остаточных напряжений в кристаллитах. Так как эти процессы при комнатной температуре для большинства металлов протекают медленно и совершаются путем перемещений атомов, решающее влияние на эти процессы оказывает температура. [2]
При холодной деформации металлов чаще других используют цинкфосфатные пленки, что очевидно связано с относительно малым значением их коэффициента трения по сравнению с другими видами пленок. [3]
При холодной деформации металла образуется текстура и происходит его упрочнение, в результате чего металл находится в неравновесном состоянии с повышенной свободной энергией. Наклепанный металл стремится самопроизвольно перейти в более равновесное состояние с меньшей свободной энергией. Восстановительные процессы ( или разупрочнение) сводятся в основном к снятию искажений и остаточных напряжений в кристаллитах. Так как эти процессы при комнатной температуре для большинства металлов протекают медленно и совершаются путем перемещений атомов, решающее влияние на эти процессы оказывает температура. [4]
На эффективность холодной деформации металла оказывают влияние не только физико-химические свойства фосфатной пленки, но также и природа применяемой при этом смазки или пропитывающего вещества. [5]
Термическая обработка и холодная деформация металлов могут оказывать влияние на их склонность к питтинговои коррозии вследствие изменения дефектности структуры, причем степень и направление влияния могут быть различными и зависят как от свойств самого металла, так и от конкретного типа его обработки. Так, например, слабые деформации могут приводить к росту склонности металлов к питтинговои коррозии вследствие повышения плотности дислокаций, появления линий скольжения и т.п., а сильные деформации, повышающие однородность его структуры, могут, напротив, способствовать увеличению питтингостойкости. [6]
Механические свойства наклепанного холодной деформацией металла после отжига при различных температурах существенно меняются. Типичные кривые изменения механических свойств приведены на рис. 27, где указаны также происходящие при этом изменения структуры. Как видно, после возврата, вызванного низкотемпературным отжигом, слегка понизилась прочность и повысилось удлинение. [7]
Сущность антифрикционного действия фосфатных пленок при холодной деформации металлов еще окончательно не выяснена. Однако установлено, что наблюдаемую при этом процессе пластическую-деформацию кристаллов, обладающих высокой твердостью и одновременно хрупкостью, нельзя рассматривать как результат скольжения кристаллов фосфатов, составляющих пленку. [8]
Известно также, что упрочнение при холодной деформации металлов связано с искажением элементарной ячейки. [9]
Снижение скорости растрескивания латуни в растворе сулемы при увеличении степени холодной деформации металла прокаткой отмечает Бобылев [6] ( фиг. [12]