какое давление выдерживает лед
akvafors
Фильтры для воды, системы очистки воды
НЕКОТОРЫЕ ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЛЬДА
НЕКОТОРЫЕ ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЛЬДА
Post by admin » 20 Jun 2011, 15:08
Устойчивость льда – это многофакторный феномен, зависящий от многих факторов, которые нужно учитывать при расчётах:
ТВЕРДОСТЬ ЛЬДА. Способность льда оказывать сопротивление проникновению другого тела, не получающего остаточных деформаций. Определяется как отношение действующей нагрузки Р к поверхности образовавшейся вмятины S. Твердость Н = P/S является средним значением давления во вмятине. В зависимости от температуры льда и времени приложения нагрузки (короткому времени соответствует динамическая твердость, длительному — статическая твердость) значения Н могут различаться более чем на порядок.
ТЕКСТУРА ЛЬДА. Особенность строения льда, обусловленная пространственными расположениями воздушных, минеральных и органических включений.
С учетом воздушных включений лед подразделяется на монолитный (лишенный видимых включений) и пористый (с наличием включений, которые могут иметь равномерное, слоистое и вертикально-волокнистое распределение).
По размеру включений лед подразделяется на мелкопузыристый (включения менее 0,2 мм), среднепузыристый (включения от 0,2 до 0,5 мм), крупнопузыристый (включения от 0,5 до 1,0 мм), крупно-полостной (включения более 1,0 мм).
Форма включений бывает овальная, трубчатая, ветвистая и трансформирующаяся. По происхождению включения подразделяются на первичные (аутогенные), вторичные (ксеногенные) и с нарушенной текстурой (катакластические).
ТЕМПЕРАТУРА ПЛАВЛЕНИЯ ЛЬДА. Температура, при которой происходит плавление льда при постоянном внешнем давлении. Плавление морского льда происходит не при определенной температуре, как у пресного льда, а непрерывно, начиная с момента, когда температура ниже 0°С до температуры замерзания морской воды данной солености.
Ход температуры во льду во времени при подводе к нему теплоты
1 — 2 — нагревание льда; 2 — 3 — плавление льда: 3 — 4— нагревание воды; tпл —температура плавления льда.
Плавление льда при атмосферном давлении происходит при температуре 0,01°С (в практических расчетах принимают 0°С). Количество теплоты, которое необходимо сообщить 1 кг льда, находящемуся при температуре плавления, для превращения его в воду, называют удельной теплотой плавления Lпл. Удельная теплота плавления пресноводного льда при нормальных условиях равна удельной теплоте кристаллизации воды 33,3·104 Дж/кг.
ТЕМПЕРАТУРОПРОВОДНОСТЬ ЛЬДА (КОЭФФИЦИЕНТ ТЕМПЕРАТУРОПРОВОДНОСТИ). Параметр, характеризующий скорость изменения температуры льда в нестационарных тепловых процессах. Коэффициент температуропроводности льда
где Cp — удельная теплоемкость льда при постоянном давлении, ρ — плотность льда, λ— коэффициент теплопроводности, численно равен повышению температуры единицы объема льда в результате теплового потока, соответствующего коэффициенту теплопроводности Cp.
ТЕНЗОР ДЕФОРМАЦИИ ЛЬДА. Совокупность деформаций бесконечно малого параллелепипеда льда, выделенного около данной точки. Представляет собой симметричный тензор 2-го ранга
Деформированное состояние элемента льда считается известным, если известны компоненты тензора деформации льда.
ТЕОРЕТИЧЕСКАЯ ПРОЧНОСТЬ ЛЬДА. Свойство льда, которое характеризуется расчетным значением напряжения, при котором мог бы произойти одновременный разрыв всех межатомных связей на поверхности разрыва. Как и у других твердых тел, оценивается значением 0,1 Е, где Е — модуль Юнга льда.
Обычно фактические значения прочности на несколько порядков ниже теоретических. Причина низкой прочности льда — неравномерное распределение внутренних напряжений; межатомные связи нагружены неодинаково, а в атомной структуре тел имеются слабые места.
При сложении одноименных внешних и внутренних напряжений возникают локальные перенапряжения, которые могут достичь значений теоретической прочности, приводя к разрыву межатомных связей. В слабых местах структуры под действием больших локальных напряжений разрыв межатомных связей происходит очень легко—так зарождаются разрывы сплошности тела. Рост и слияние разрывов сплошности образует макроскопическую трещину, развитие которой приводит к разрушению тела. Теоретическую прочность также называют идеальной прочностью, плотностью сил когезии (т. е. сил молекулярного взаимодействия частей одного и того же тела) или просто когезией, которая может быть охарактеризована теплотой (работой) испарения.
ТЕПЛОЕМКОСТЬ ЛЬДА. Одна из основных термодинамических характеристик льда, отражающая степень его нагрева в результате количества теплоты, полученной льдом. В практических расчетах обычно используют удельную теплоемкость льда, понимая под этим количество теплоты, которое необходимо сообщить единице массы льда, чтобы повысить его температуру на 1 К. Теплоемкость пресноводного льда уменьшается с понижением температуры (от 2,12 кДж/(кг*К) при 0°С), стремясь к нулю при О К.
ТЕПЛОПРОВОДНОСТЬ ЛЬДА (КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ). Величина, характеризующая процесс переноса тепловой энергии в неравномерно нагретом льду, приводящий к выравниванию температуры. Теплопроводность является коэффициентом пропорциональности между плотностью теплового потока q и градиентом температуры Т, входящих в известное уравнение
Теплопроводность льда численно равна плотности теплового потока при разности температуры 1К на единицу расстояния. С понижением температуры теплопроводность возрастает. Согласно теоретическим расчетам и многочисленным экспериментальным данным, при температуре
0°С теплопроводность пресноводного льда равна
ТЕРМИЧЕСКОЕ РАЗРУШЕНИЕ. Разрушение ледяного покрова вследствие его таяния при повышении температуры воздуха. Термическое разрушение уменьшает прочность льда, изменяет его структуру и текстуру, сокращает горизонтальные размеры и др.
Внешними проявлениями термического разрушения ледяного покрова являются взлом и дробление льдов, фиксируемые следующими сроками их появления: дата начала весеннего взлома (день, когда произошел откол части припая, день появления первых признаков таяния и снижения его прочности); дата первой весенней подвижки припая (день, когда видимая площадь припая (за исключением его подошвы), расчлененного большим количеством трещин, испытала горизонтальный сдвиг, сохранив при этом взаимное положение блоков льда; дата окончательного разрушения припая (день, когда произошел распад припая на блоки льда, которые сместились относительно друг друга, понизив тем самым сплоченность льда).
ТРЕЩИНЫ В ЛЕДЯНОМ ПОКРОВЕ. Нарушения сплошности ледяного покрова, представляющие собой зону, в которой прекращается взаимодействие между ионами и атомами кристаллической решетки на разных ее сторонах. Образуются в результате разрыва или разлома, как результат превышения прочности льда на растяжение, сжатие, изгиб и сдвиг. Трещины в ледяном покрове подразделяются по генетическим и морфологическим признакам.
По морфологическим признакам трещины подразделяются на следующие виды.
По форме в плане их простирания — прямые (прямолинейные, клиновидные, щелевидные), изогнутые (дугообразные, кулисообразные, круговые), изломанные (зигзагообразные, синусоидные, циклоидные) (фото 38).
По форме разреза краев трещин—гладкие, неровные, зазубренные.
По длине—внутриблоковые (длиной до 5 км), межблоковые (длиной до 100 км), магистральные (длиной в несколько сотен километров).
По величине раскрытия—узкие (шириной до 5 м), средние (шириной от 5 до 15 м), широкие (шириной до 50 м).
По глубине проникновения — зияющие, нераскрывшиеся.
ТЕПЛОФИЗИЧЕСКИЕ (ТЕРМИЧЕСКИЕ) СВОЙСТВА ЛЬДА.
С уважением,
Сервисная служба www.akvafors.lv
Тел. 22336877
67370583
E-mail: akvafors@akvafors.lv
Адрес магазина: Кр. Валдемара 95
Post by admin » 20 Jun 2011, 15:08
Лёд – кристаллическая модификация воды. По последним данным лёд имеет 14 структурных модификаций. Среди них есть и кристаллические (их большинство) и аморфные модификации, но все они отличаются друг от друга взаимным расположением молекул воды и свойствами. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии, образуются в условиях экзотических — при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.
Самое необычное свойство льда — это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки льда или гигантских ледниковых масс.
Кристаллическая структура льда похожа на структуру алмаза: каждая молекула Н2O окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76 ангстрем и размещенных в вершинах правильного тетраэдра. В связи с низким координационным числом структура льда является сетчатой, что влияет на его невысокую плотность.
В природе лёд представлен главным образом, одной кристаллической разновидностью, кристаллизующейся в гексагональной решётке, с плотностью 931 кг/м3. Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного), а также в виде снега, инея и т. д. Поскольку лёд легче жидкой воды, то образуется он на поверхности водоёмов, что препятствует дальнейшему замерзанию воды.
Природный лёд обычно значительно чище, чем вода, так как при кристаллизации воды в первую очередь в решётку встают молекулы воды, а примеси вытесняются в жидкость.
Лёд может содержать механические примеси — твёрдые частицы, капельки концентрированных растворов, пузырьки газа. Наличием кристалликов соли и капелек рассола объясняется солоноватость морского льда.
Общие запасы льда на Земле около 30 млн. км3. Больше всего льда сосредоточено в Антарктиде, где толщина его слоя достигает 4 км. Также имеются данные о наличии льда на планетах Солнечной системы и в кометах.
Наиболее изученным является лёд I-й природной модификации. Лёд встречается в природе в виде льда (материкового, плавающего, подземного и т.д.), а также в виде снега, инея и т.д. Он распространён во всех областях обитания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Ледники, ледяные покровы, вечная мерзлота, сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. Лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.
Природный лёд обычно значительно чище, чем вода, т.к. растворимость веществ (кроме NH4F) во льде крайне низкая.
Табл. 1. — Некоторые свойства льда I
Теплота таяния, кал/г
Теплота парообразования, кал/г
Сильно уменьшается с понижением температуры
Коэффициент термического расширения, 1/°C
Теплопроводность, кал/(см сек··°C)
для обыкновенного луча
для необыкновенного луча
Удельная электрическая проводимость, ом—1·см—1
Кажущаяся энергия активации 11ккал/моль
Поверхностная электропроводность, ом—1
Кажущаяся энергия активации 32ккал/моль
Средняя эффективная вязкость, пз
Показатель степени степенного закона течения
Энергия активации при деформировании и механической релаксации, ккал/моль
Линейно растет на 0,0361 ккал/(моль·°C) от 0 до 273,16 К
С уважением,
Сервисная служба www.akvafors.lv
Тел. 22336877
67370583
E-mail: akvafors@akvafors.lv
Адрес магазина: Кр. Валдемара 95
Re: НЕКОТОРЫЕ ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЛЬДА
Post by admin » 20 Jun 2011, 15:09
В связи с широким распространением воды и льда на Земле отличие свойств льда от свойств других веществ играет важную роль в природных процессах. Вследствие меньшей, чем у воды, плотности лёд образует на поверхности воды плавучий покров, предохраняющий реки и водоёмы от донного замерзания. Зависимость между скоростью течения и напряжением у поликристаллического льда гиперболическая; при приближённом описании её степенным уравнением показатель степени увеличивается по мере роста напряжения.
Кроме того, скорость течения льда прямо пропорциональна энергии активации и обратно пропорциональна абсолютной температуре, так что с понижением температуры лёд приближается по своим свойствам к абсолютно твёрдому телу. В среднем при близкой к таянию температуре текучесть льда в 106 раз выше, чем у горных пород. Благодаря своей текучести лёд не накопляется в одном месте, а в виде ледников постоянно перемещается.
Лед трудно расплавить, как бы ни странно это звучало. Не будь водородных связей, сцепляющих молекулы воды, он плавился бы при –90°С. При этом, замерзая, вода не уменьшается в объеме, как это происходит с большинством известных веществ, а увеличивается — за счет образования сетчатой структуры льда.
Вследствие очень высокой отражательной способности льда (0,45) и снега (до 0,95) покрытая ими площадь — в среднем за год около 72 млн. км2 в высоких и средних широтах обоих полушарий — получает солнечного тепла на 65% меньше нормы и является мощным источником охлаждения земной поверхности, чем в значительной мере обусловлена современная широтная климатическая зональность. Летом в полярных областях солнечная радиация больше, чем в экваториальном поясе, тем не менее температура остаётся низкой, т. к. значительная часть поглощаемого тепла затрачивается на таяние льда, имеющего очень высокую теплоту таяния.
К другим необычным свойствам льда относят и генерацию электромагнитного излучения его растущими кристаллами. Известно, что большинство растворенных в воде примесей не передается льду, когда он начинает расти; они вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. При этом примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом получается ледовая структура.
Лёд II, III и V-й модификации длительное время сохраняются при атмосферном давлении, если температура не превышает —170°С. При нагревании приблизительно до —150°С лёд превращаются в кубический лёд Ic.
При конденсации паров воды на более холодной подложке образуется аморфный лёд. Обе эти формы льда могут самопроизвольно переходить в гексагональный лёд, причём тем скорее, чем выше температура.
Лёд IV-й модификации является метастабильной фазой льда. Он образуется гораздо легче и особенно стабилен, если давлению подвергается тяжёлая вода.
Кривая плавления льда V и VII исследована до давления 20 Гн/м2 (200 тыс. кгс/см2). При этом давлении лёд VII плавится при температуре 400°С.
Лёд VIII является низкотемпературной упорядоченной формой льда VII.
Лёд IX — метастабильная фаза, возникающая при переохлаждении льда III и по существу представляющая собой его низкотемпературную форму.
С уважением,
Сервисная служба www.akvafors.lv
Тел. 22336877
67370583
E-mail: akvafors@akvafors.lv
Адрес магазина: Кр. Валдемара 95
Re: НЕКОТОРЫЕ ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЛЬДА
Post by admin » 20 Jun 2011, 15:09
Лед, который образуется при атмосферном давлении и плавится при 0 °С, — самое привычное, но всё же до конца не понятное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода выстроены упорядоченно, образуя правильные шестиугольники, а атомы водорода занимают самые разные положения вдоль связей. Поэтому возможны 6 эквивалентных ориентаций молекул воды относительно их соседей. Часть из них исключается, поскольку нахождение одновременно 2 протонов на одной водородной связи маловероятно, но остаётся достаточная неопределённость в ориентации молекул воды. Такое поведение атомов нетипично, поскольку в твердом веществе все подчиняются одному закону: либо все атомы расположены упорядоченно, и тогда это — кристалл, либо случайно, и тогда это — аморфное вещество. Такая необычная структура может реализоваться в большинстве модификаций льда — I, III, V, VI и VII (и по-видимому в Ic), а в структуре льда II, VIII и IX молекулы воды ориентационно упорядочены. По выражению Дж. Бернала лёд кристалличен в отношении атомов кислорода и стеклообразен в отношении атомов водорода.
Значение льда трудно недооценить. Лёд оказывает большое влияние на условия обитания и жизнедеятельности растений и животных, на разные виды хозяйственной деятельности человека. Покрывая воду сверху, лед играет в природе роль своего рода плавучего экрана, защищающего реки и водоемы от дальнейшего замерзания и сохраняющего жизнь подводному миру. Если бы плотность воды увеличивалась при замерзании, лед оказался бы тяжелее воды и начал тонуть, что привело бы к гибели всех живых существ в реках, озерах и океанах, которые замерзли бы целиком, превратившись в глыбы льда, а Земля стала ледяной пустыней, что неизбежно привело бы к гибели всего живого.
Природный лёд используется для хранения и охлаждения пищевых продуктов, биологических и медицинских препаратов, для чего он специально производится и заготавливается.
С уважением,
Сервисная служба www.akvafors.lv
Тел. 22336877
67370583
E-mail: akvafors@akvafors.lv
Адрес магазина: Кр. Валдемара 95
Лёд и двойная спираль
Post by admin » 20 Jun 2011, 15:09
Cамое удивительное в структуре льда заключается в том, что молекулы воды при низких отрицательных температурах и высоких давлениях внутри нанотрубок могут кристаллизоваться в форме двойной спирали, похожей на ДНК. Это было доказано компьютерными экспериментами американских учёных под руководством Сяо Чэн Цзэна в Университете штата Небраска (США).
Общий вид структуры воды (изображение New Scientist) (фото выше)
Внутренняя стенка структуры воды (изображение New Scientist) (фото ниже)
Учёные ожидали увидеть, что вода во всех случаях образует тонкую трубчатую структуру. Однако, модель показала, что при диаметре трубки в 1,35 нм и давлении в 40000 атмосфер водородные связи искривились, приведя к образованию спирали с двойной стенкой. Внутренняя стенка этой структуры является скрученной в четверо спиралью, а внешняя состоит из четырёх двойных спиралей, похожих на структуру молекулы ДНК.
С уважением,
Сервисная служба www.akvafors.lv
Тел. 22336877
67370583
E-mail: akvafors@akvafors.lv
Адрес магазина: Кр. Валдемара 95
Снежинки
Post by admin » 20 Jun 2011, 15:10
Cнежинка — это монокристалл льда – разновидность гексагонального кристалла, но выросшего быстро, в неравновесных условиях. Над тайной их красоты и бесконечного разнообразия не одно столетие бьются учёные.
Большую коллекцию фотографий снежинок собрал американец Уилсон Бентли. В 1931 году он опубликовал сборник репродукций, в котором содержались фотографии 2450 ледяных кристаллов.
Жизнь снежинки начинается с того, что в облаке водяного пара при понижении температуры образуются кристаллические зародыши льда. Центром кристаллизации могут быть пылинки, любые твердые частицы или даже ионы, но в любом случае эти льдинки размером меньше десятой доли миллиметра уже имеют гексагональную кристаллическую решетку.
Водяной пар, конденсируясь на поверхности этих зародышей, образует сначала крошечную гексагональную призму, из шести углов которой начинают расти одинаковые ледяные иголочки — боковые отростки, т.к. температура и влажность вокруг зародыша тоже одинаковые. На них в свою очередь вырастают, как на дереве, боковые отростки — веточки. Подобные кристаллы называют дендритами, то есть похожими на дерево.
Передвигаясь вверх и вниз в облаке, снежинка попадает в условия с разной температурой и концентрацией водяного пара. Ее форма меняется, до последнего подчиняясь законам гексагональной симметрии. Так снежинки становятся разными. Хотя теоретически в одном облаке на одной высоте они могут «зародиться» одинаковыми. Но путь до земли у каждой свой, довольно долгий — в среднем снежинка падает со скоростью 0,9 км в час. А значит, у каждой — своя история и своя окончательная форма. Образующий снежинку лед прозрачен, но когда их много, солнечный свет, отражаясь и рассеиваясь на многочисленных гранях, создает у нас впечатление белой непрозрачной массы — мы называем ее снегом.
Как разнообразны формы снежинок, инея, морозных узоров на окнах – твердых кристаллов воды, так еще более удивительно разнообразны формы и свойства жидких кристаллов, образующихся при таянии льда.
На рисунке представлены фотографии (Джил Уолкер), тающего чистого льда и типичные формы кристаллов, образующихся в замерзающей чистой воде. В тающем льду хорошо видны кластеры, которые затем, деформируясь и меняя форму, сохраняются и в жидкой воде, вплоть до температуры кипения. Даже водяной пар состоит не только из отдельных молекул, но на 10% из различных более сложных структур.
В природе, наверное, нет двух совершенно одинаковых снежинок. Каждый момент времени, каждая точка пространства в один и тот же момент времени, несут свою неповторимую информацию в виде физико-химических факторов внешней среды, которую воспринимает и фиксирует в своей структуре образующаяся снежинка. Каждая снежинка, падая на землю, проходит через слои воздуха, отличающиеся влажностью, температурой, загрязнением и другими параметрами. Поэтому среди миллионов снежинок вряд ли можно найти две совершенно одинаковые.
Чтобы не путаться с многообразием снежинок, Международная комиссия по снегу и льду приняла в 1951 году довольно простую классификацию кристаллов льда: пластинки, звездчатые кристаллы, столбцы или колонны, иглы, пространственные дендриты, столбцы с наконечниками и неправильные формы. И еще три вида обледенелых осадков: мелкая снежная крупка, ледяная крупка и град.
Тем же законам подчиняется и рост инея, изморози и узоров на стеклах. Эти явления, как и снежинки, образуются при конденсации, молекула за молекулой — на земле, траве, деревьях. Узоры на окне появляются в мороз, когда на поверхности стекла конденсируется влага теплого комнатного воздуха. А вот градины получаются при застывании капель воды или когда в насыщенных водяным паром облаках лед плотными слоями намерзает на зародыши снежинок. На градины могут намерзать другие, уже сформировавшиеся снежинки, сплавляясь с ними, благодаря чему градины принимают самые причудливые формы.
Свойства льда и безопасность
Идеальную картину намерзания льда сильно меняет толщина имеющегося на нем снежного покрова
Для рыболовов-зимников, выходящих на лед разных по типу водоемов, просто необходимо знать и понимать, какие условия эволюции ледового покрова определяют безопасность или невозможность нахождения на нем. При этом главной характеристикой льда будет его прочность, которая является величиной непостоянной, сильно зависящей от вида и структуры льда, его температуры и толщины.
Бывает, начало зимы сопровождается частыми оттепелями с осадками в виде дождя или мокрого снега. Тогда ледовый покров намерзает поэтапно в морозные промежутки между циклонами. При этом его толщина прирастает как снизу – за счет кристаллизации поверхностной воды водоема, так и сверху – из-за смерзания снежно-водяной «каши», возникшей поверх льда во время очередного ненастья. Такой лед получается мутным, многослойным. Следует иметь в виду, что он примерно в два раза слабее (выдерживает в два раза меньшую статическую нагрузку) льда, прозрачного как стекло. Поэтому выходить на белесый, непрозрачный ледовый покров безопасно, когда он достигнет толщины более 10 сантиметров, да еще при условии отрицательной температуры воздуха. Это важно знать по той причине, что рыболовы, как правило, стремятся на участки с подобным льдом, так как здесь в условиях пониженной освещенности обычно скапливается рыба и клюет она в таких местах гораздо лучше.
Как уже сказано, наиболее прочен чистый, прозрачный лед. Это кристаллический монолит, образовавшийся от замерзания переохлажденного верхнего слоя воды. Однако ловить рыбу с такого льда имеет смысл лишь над большой глубиной, куда доходит мало света и рыба не пуглива. Поэтому безопасным он будет при достижении толщины не менее 5 сантиметров – лишь в этом случае лед надежно выдерживает одного человека, а вот группами на нем собираться нельзя.
Прочность ледового покрова линейно увеличивается с ростом его толщины и с понижением температуры. Но тут надо представлять, что температура льда по толщине различна: вверху она равна атмосферной, а внизу – соответствует точке замерзания воды, то есть около ноля градусов. А поскольку температурный коэффициент линейного расширения льда огромен (например, в пять раз больше, чем у железа) и многие, наверное, видели, как разрываются прочные сосуды с замерзшей водой, то становится понятно, что аналогичные процессы неизбежны и со льдом на водоеме: по мере роста его толщины имеющие разную температуру слои испытывают расширяющую нагрузку как поперечного, так и продольного направления. Именно поэтому при резких потеплениях или похолоданиях лед на водоемах лопается с оглушительным грохотом и по нему разбегаются длинные трещины. Кроме того, на огромных акваториях озер и водохранилищ эти трещины, с одной стороны, вызывают образование ледовых торосов, а с другой (для компенсации) – широкие разводья, в которые можно запросто угодить, особенно после укрывающих открытую воду снегопадов.
Можно подумать, что трещины на ледовой поверхности образуются бессистемно, хаотично. Однако не все так просто, если вспомнить механизм льдообразования: в начале зимы, когда лед еще не везде одинаков по толщине, напряжения локализуются в узких зонах стыковки толстого и тонкого ледового покрова, то есть там, где мелководье резко переходит на глубину. Опытные рыболовы знают, что донные свалы, где часто держится рыба, следует искать по старым и широким, идущим обычно параллельно основному руслу трещинам. При этом глубокая сторона водоема будет определяться по близко располагающейся к обычно крутому берегу трещине, и наоборот.
Чтобы представлять, какой лед может ожидать на водоеме в начале зимы, следует знать, что его прирост в течение суток сильно зависит от температуры воздуха и уже имеющейся толщины. Это выглядит примерно так: если лед был уже около 10 сантиметров, то за следующие сутки он прибавит 4 см при морозе минус 5; 6 см – при морозе 10; 8 см – при минус 15; 9 см – при минус 20. Но если исходная толщина льда составляет, допустим, 20-30 см, то суточный прирост при тех же температурах уменьшится примерно в 3-4 раза – точнее сказать нельзя, поскольку на это влияет и качество воды.
Конечно, идеальную картину намерзания льда сильно меняет толщина имеющегося на нем снежного покрова, который выполняет как бы роль шубы. Известно, что теплопроводность (холодопроводность) снега до 30 раз меньше, чем у льда (многое зависит еще от плотности снега), поэтому при снегопадах в зависимости от их интенсивности надо вносить в расчеты соответствующую поправку.
Важно понимать по виду первого, непрочного льда, как он реагирует на нагрузку. Рыболовы с опытом говорят, что молодой лед не обманет, не подведет, а вовремя сообщит об опасности громким треском и видом трещин. Приложенная к тонкому льду нагрузка (рыболов на льду) вызывает его прогиб (деформацию) в виде чаши. При малом грузе деформация носит упругий характер, а чаша расширяется симметрично по периметру. Если нагрузка будет выше предела упругости, то начнется пластическая деформация льда и чаша прогиба станет быстрее увеличиваться в глубину, чем в ширину – это начало разрушения льда. В количественном выражении это будет выглядеть так. Для наиболее прочного прозрачного льда центральный прогиб его на глубину в 5 см трещин не вызовет; прогиб в 9 см ведет к усиленному образованию трещин; прогиб в 12 см вызывает сквозное растрескивание; при 15 см лед проваливается.
Под действием нагрузки трещины во льду возникают как радиальные – исходящие от точки приложения, так и концентрические – вокруг этой точки. Радиальные трещины лишь предупреждают о недостаточной прочности льда, что требует предельной осторожности на нем. Но если к радиальным трещинам добавляется концентрическое растрескивание, сопровождаемое характерным скрипящим звуком, нужно скользящим шагом немедленно покинуть опасный участок, в особо критической ситуации лучше лечь на лед, чтобы увеличить площадь распределения веса по поверхности, и отползти в обратном направлении. Нужно знать и другие правила поведения на тонком льду:
– ни в коем случае не ходить по нему гуськом, иначе радиальные трещины на тропе быстро прирастут концентрическими;
– не отправляться на рыбалку в одиночку;
– проверять каждый шаг на льду остроконечной пешней, но не бить ею лед перед собой – лучше сбоку;
– не подходить к другим рыболовам ближе чем на 3 метра;
– не приближаться к местам, где в лед вмерзли коряги, водоросли, воздушные пузыри;
– не ходить рядом со свежей трещиной или по участку льда, отделенному от основного массива несколькими трещинами;
– быстро покинуть опасное место, если из проделанной лунки начинает бить фонтаном вода;
– обязательно иметь средства страховки и спасения (шнур с грузом на конце, длинную жердь, широкую доску);
– не совмещать рыбалку с потреблением спиртного.