какое давление в скважине нефтяной

Поддержание пластового давления (ППД) на нефтяных залежах

​Схема системы ППД для подготовки, транспортировки, закачки рабочего агента.

1.1. Принципиальная схема системы ППД

Система ППД представляет собой комплекс технологического оборудования необходимый для подготовки, транспортировки, закачки рабочего агента в пласт нефтяного месторождения с целью поддержания пластового давления и достижения максимальных показателей отбора нефти из пласта.

Система ППД должна обеспечивать:

— необходимые объемы закачки воды в пласт и давления ее нагнетания по скважинам, объектам разработки и месторождению в целом в соответствии с проектными документами;

— подготовку закачиваемой воды до кондиций (по составу, физико-химическим свойствам, содержанию мех. примесей, кислорода, микроорганизмов), удовлетворяющих требованиям проектных документов;

— проведение контроля качества вод системы ППД, замеров приемистости скважин, учета закачки воды как по каждой скважине, так и по группам, пластам и объектам разработки и месторождению в целом;

— герметичность и надежность эксплуатации системы промысловых водоводов, применение замкнутого цикла водоподготовки и заводнения пластов с использованием сточных вод;

— возможность изменения режимов закачки воды в скважины, проведения ОПЗ нагнетательных скважин с целью повышения приемистости пластов, охвата пластов воздействием заводнения, регулирование процесса вытеснения нефти к забоям добывающих скважин.

Система ППД включает в себя следующие технологические узлы (см. рис.10.1)

— систему нагнетательных скважин;

— систему трубопроводов и распределительных блоков (ВРБ);

— станции по закачке агента (БКНС), а также оборудование для подготовки агента для закачки в пласт.

Рис.1.1.1. Принципиальная схема системы ППД

1.2. Система трубопроводов ППД

К трубопроводам системы поддержания пластового давления относятся:

— нагнетательные линии (трубопровод от ВРБ до устья скважины);

— водоводы низкого давления (давление до 2 МПа);

— водоводы высокого давления (в водоводах высокого давления нагнетание воды осуществляется насосными агрегатами);

— внутриплощадочные водоводы (водоводы площадочных объектов).

Транспортируемой продукцией трубопроводов является агрессивная смесь вод, содержащая: механические примеси, серу, кальцит и другие вредные вещества.

Технологии сбора и транспорта продукции

Подача воды на блочные кустовые насосные станции (БКНС) осуществляется из нескольких источников:

— по водоводам низкого давления подается пластовая вода (УПСВ и ЦППН (ЦПС));

— по водоводам низкого давления подается вода из водозаборных скважин;

— из открытых водоемов по водоводам низкого давления подается пресная вода.

Рис.1.2.1. Кольцевая (а) и лучевая (б) водораспределительные системы 1 водоочистная станция; 2 магистральный водовод; 3 водовод высокого давления; 4 нагнетательная линия; 5 колодец; 6 нагнетательные скважины; 7 подводящие водоводы; 8 подземные резервуары чистой воды; 9 кустовая насосная станция; 10 перемычка

Из БКНС рабочий агент (вода) через водораспределительные блоки (ВРБ) по водоводам высокого давления и нагнетательным линиям скважин подается для закачки в пласт с целью поддержания пластового давления.

Основные технологические параметры

Конструкция промысловых трубопроводов (диаметр, толщина стенки), способ их прокладки, материал для их изготовления определяются проектной организацией и обеспечивают:

— безопасную и надежную эксплуатацию;

— промысловый сбор и транспорт вод системы ППД в нагнетательные скважины;

— производство монтажных и ремонтных работ;

— возможность надзора за техническим состоянием водоводов;

— защиту от коррозии, молний и статического электричества;

— предотвращение образования гидратных и других пробок.

Рабочее давление в трубопроводах системы ППД

Размеры и масса нефтепроводных труб (по ГОСТ 3101 46) приведены в табл. 1.3.1. Нефтепроводные трубы испытываются на гидравлическое давление не более 40 МПа, рассчитываемое по формуле

где Р гидравлическое давление в МПа; δ минимальная толщина стенки в мм.; ơ допускаемое напряжение, принимаемое равным 35% предела прочности, в кг/мм 2 ; d внутренний диаметр трубы, в мм.

Графитовые смазки для резьбовых соединений труб

Для смазывания резьбовых соединений труб применяют графитовые смазки следующих составов:

1) 5 массовых частей машинного масла, 1 массовая часть графитового порошка (смесь тщательно размешивается до мазеобразного состояния);

2) 50…60 % графитового порошка, 5% технического жира, 1,5 % каустической соды крепостью 32 градусов Ве, 33,5 43,5 % машинного масла (все составляющие части берутся в процентах к общей массе);

3) 24% солидола, 36% графита, 8% известкового молока, 2% канифоли (все составные части берутся в процентах к общей массе).

Размеры и масса нефтепроводных труб

1.4. Насосные станции и установки для закачки воды

Для закачки воды используются насосные станции и установки, базирующиеся, в основном, на центробежных поршневых насосных агрегатах (рис. 1.4.1).

Описание конструкции и принцип действия БКНС

Насосный блок включает в себя в качестве основных элементов центробежные многоступенчатые секционные насосы типа ЦНС-180 или ЦНС-500, основные показатели которых, в зависимости от числа ступеней, приведены в табл.1.4.1. Насосный блок включает электропривод насоса (синхронного типа серии СТД со статическим возбуждением или асинхронного типа серии АРМ), масляную установку для насосного агрегата, осевой вентилятор с электроприводом, пост местного управления с кнопкой аварийного останова, стенд приборов, запорно-регулирующую арматуру насосного агрегата, технологические трубопроводы.

Блок напорной гребенки (БГ), предназначенный для учета и распределения поступающей от насоса ТЖ по напорным трубопроводам, размещают в отдельном цельнометаллическом боксе на расстоянии не менее чем 10 м от остальных блоков. Включает в себя распределительный коллектор, коллектор обратной промывки, пункт управления, расходомер с сужающим устройством, запорный вентиль, вентилятор, площадку для обслуживания, электропечь.

Перспективным направлением является применение гидропроводных модульных насосов с «абсолютной» регулируемостью подачи.

Электропровод и кабели уложены в металлических коробах, стальных трубах, гибких металлорукавах. В БА электропроводы (стянутые в жгуты) и кабели проложены в лотках под настилом, доступ к которым осуществляется через люки.

Работа станции происходит следующим образом. Технологическая вода через всасывающий трубопровод подается на вход центробежного насоса ЦНС-180. От насоса по напорному трубопроводу вода подается в БГ, где распределяется на восемь, пять или четыре водонапорных водовода (в зависимости от типа БГ) и далее подается на нагнетательные скважины.

Для сброса воды из водоводов при ремонте БГ имеется специальный коллектор. Насосные агрегаты с насосами ЦНС 180-1900 и ЦНС 180-1422 снабжены индивидуальными маслосистемами, обеспечивающими принудительную подачу масла для смазки и охлаждения подшипников насоса и электродвигателя.

Система водяного охлаждения предусматривает:

— охлаждение масла при принудительной смазке подшипников насосного агрегата НБ;

— охлаждение подшипников НА с насосом ЦНС- 1050;

— подачу воды для охлаждения и запирания сальников концевых уплотнений насосов ЦНС-180 в случае падения давления во всасывающем патрубке насоса до 0,1 МПа, а также охлаждение электродвигателей с ЗЦВ.

Из резервуара сточная вода периодически перекачивается основными насосами БД ЦНСК-60/254 на вход насосов ЦНС-180.

В БА установлена аппаратура, обеспечивающая пуск, контроль основных параметров и эксплуатацию станции, аппаратуры распределения электроэнергии, щитов управления двигателями, отопления и дренажных насосов. Измерение, запись давления и расхода воды. поступающей в нагнетательные скважины производится расходомерными устройствами, расположенными на каждом водоводе БГ.

В качестве основного варианта рассмотрим насосный блок с принудительной смазкой подшипников насосного агрегата НА (давление на выкупе насосов выше 10 МПа).

— насосный агрегат НА, состоящий из насоса типа ЦНС-180 и электродвигателя;

— маслоустановка и трубопроводы системы смазки с арматурой;

— трубопроводы и арматура технологической воды;

— трубопроводы и арматура системы охлаждения;

— трубопроводы подпора и охлаждения сальников насоса;

— кнопочный пост управления маслоустановкой,

— кнопочный пост управления электроприводной задвижкой;

— короба и трубы электропроводки,

— кнопочный пост управления вентиляцией.

Установленное оборудование смонтировано и закреплено на санях и ограждающих конструкциях блока.

Для защиты проточной части насоса от крупных механических примесей во всасывающем патрубке установлен сетчатый фильтр.

На всасывающем трубопроводе технологической воды установлены клиновая задвижка типа ЗКЛ2 и сетчатый фильтр. На напорном трубопроводе установлены обратный клапан и электроприводная задвижка В-407Э. В верхней точке напорного трубопровода установлен вентиль для стравливания воздуха.

Трубопроводы системы охлаждения предназначены для подвода охлаждающей воды к маслоохладителю и воздухоохладителям двигателей с ЗЦВ. От системы охлаждения вода подается вода для запирания и охлаждения концевых сальниковых уплотнений насоса при падении давления а приемном патрубке насоса ниже 0,1 МПа.

При работе насоса с давлением во входном патрубке от 0,6 до 3,0 МПа происходит разгрузка сальников с отводом воды через щелевые уплотнения насоса в безнапорную емкость. Отвод воды из камеры гидропяты насоса производится во всасывающий трубопровод. Дренаж от концевых уплотнений насоса производится в дренажный бак, установленный в БД.

Местный контроль технологических и эксплуатационных параметров работы насосных агрегатов, настройка датчиков сигнализации осуществляются по манометрам и показаниям амперметра цепи возбуждения двигателя типа СТД.

После пуска кнопкой «пуск со щита управления, установленного в БА, включается масляный насос, и при достижении давления в конце масляной линии 0,05. 0,1 МПа начинается запуск основного насоса. После достижения давления за насосом 0,9 Рном начинает открываться электрозадвижка на линии нагнетания. После открытия задвижки в течение 60с насос выходит на установившийся режим работы.

При работе станции за счет амортизаторов и упругих компенсирующих вставок на трубопроводах снижается передача вибрации от насосного агрегата трубопроводам, несущим конструкциям, основаниям блоков и фундаментам, а также уменьшается передача шума.

— 2 насосных агрегата с насосами ЦНСК-60/264;

— 2 самовсасывающих насоса 1СЦВ-1,5М;

— 4 блока печей ПЭТ-4;

— защитные короба электропроводки;

— трубопроводы и арматура технологической воды.

Насосы 1СЦ8-1,5М предназначены для откачки воды из дренажного бака в резервуар сточных вод. Насосы типа ЦНСК-60/264 служат для откачки воды из резервуара сточных вод во всасывающий трубопровод НБ.

1 насос является резервным. Блок напорной гребенки (БГ) служит для распределения технологической воды на скважины системы ППД. Разработано шесть типов блока напорной гребенки в зависимости от количества водоводов и типа устройства измерения расхода воды.

— устройство измерения расхода;

— элементы вентиляции и отопления,

— кнопочный пост управления вентиляцией.

Блок трубопроводов состоит из напорного коллектора с регулирующими вентилями, высоконапорных водоводов, сбросного коллектора, вентилей и устройства измерения расхода. Изменение расхода технологической воды осуществляется регулирующими вентилями, установленными на напорном коллекторе.

В зависимости от количества водоводов блоки напорных гребенок подразделяются на 8-, 5- и 4-водоводные. 5- и 4-водоводные блоки напорной гребенки могут поставляться отдельно от станции. По типу устройства измерения расхода воды блоки гребень поставляются с: сужающим устройством в комплекте со щитом дифманометров; аппаратурой Электрон-2М; датчиком расхода ДРК 1-100-50-5.

В таблице 1.4.3 приведена техническая характеристика четырех основных групп блочных кустовых насосных станций: БКНС¥100; БКНС¥150, БКНС¥200; БКНС¥500.

Центробежные насосы секционные типа ЦНС

В табл. 1.4.4 приведены технические характеристики центробежных секционных насосов производительностью 38 и 60 м 3 /час. В табл. 1.4.5 приведены технические характеристики центробежных секционных насосов производительностью 105, 180 и 300 м 3 /час.

Состав блоков БКНС

* С замкнутым циклом вентиляции.

** В комплект заводской поставки не входят.

Источник

Нефтянка для инженеров, программистов, математиков и широких масс трудящихся, часть 2

какое давление в скважине нефтяной

Сегодня мы расскажем о том, как буровые станки бороздят просторы Сибири, из чего состоит скважина; зачем, для того, чтобы добыть что-нибудь нужное, надо сначала закачать в пласт что-нибудь ненужное; и из чего, собственно, сделана нефтяная залежь. Это вторая часть из серии статей для будущих математиков-программистов, которым предстоит решать задачи, связанные с моделированием нефтедобычи и разработкой инженерного ПО в области сопровождения нефтедобычи.

Первую часть серии можно прочесть здесь

Конструкция скважины

Скважина – это отверстие в земле, в земной коре (в почве, потом в глине, потом во всяких разных породах – все видели слоистость земли на стенке любого строительного котлована), пробуренное до глубины залегания месторождения с целью выкачивания из месторождения чего-нибудь нужного (нефти или газа) или закачивания в месторождение чего-нибудь ненужного (воды или углекислого газа). Места, где нефть можно просто черпать с поверхности земли или поднимать воротом из неглубоких колодцев, почти закончились: теперь до нефти нужно сначала добуриться.

какое давление в скважине нефтяной

Скважину бурят буровой установкой, которая насаживает на трубу специальное буровое долото с вращающимися резцами. В зависимости от способа, может вращаться сама труба вместе с резцами, или труба может не вращаться, но в буровой инструмент подаётся по той же трубе (бурильной колонне) электричество или буровой раствор под давлением. В последнем случае буровой раствор и приводит в движение долото, и он же обратным потоком жидкости выносит на поверхность всё, что там резец набурит. Не знаю, как вы, а я был в своё время восхищён такой инженерной идеей. Там ещё и телеметрия передаётся обратно звуковыми волнами тоже по потоку жидкости.

какое давление в скважине нефтяной

В процессе бурения можно увеличивать или уменьшать вертикальную нагрузку на долото (то есть, давить вниз) для изменения скорости проходки, а также потихоньку отклонять буровую колонну для того, чтобы направлять скважину в ту или иную сторону. По понятным причинам для бурения нескольких скважин удобнее всего начинать бурение в одном и том же месте, называемом кустом скважин: удобно подвозить к одному месту руду, дерево, ртуть, серу, кристаллы, золото материалы, бригады, оборудование, подводить электричество, а после запуска всех скважин в работу – собирать нефть. Делать это с десятка скважин на одном кусту очевидно удобнее, чем с десятка скважин, рассредоточенных на необъятных просторах торфяных болот Сибири. Поэтому начинают бурить все скважины куста с одной площадки, и постепенно разводят их по траекториям в разные стороны, чтобы на поверхности все траектории скважин куста сходились в одном месте, но внизу равномерно распределялись по какому-то заданному участку месторождения. Это означает, что чаще всего у набора скважин с одного куста есть несколько типовых участков траектории: начальный участок продолжается участком, где скважины разводятся по разным азимутам. Если кто забыл, азимут – это направление, на которое стрелка компаса указывает, точнее – отклонение от этой стрелки. Потом идёт участок набора глубины, потом участок хитрого входа в нефтесодержащий пласт, ну и собственно, участок скважины внутри нефтесодержащего пласта, где в скважину через её стенки поступает нефть.

Чаще всего месторождение “в длину” и “в ширину”, то есть по латерали, гораздо больше, чем “в высоту”, то есть по вертикали. По латерали месторождение может простираться на километры, десятки и сотни километров, а по вертикали – на метры, десятки и сотни метров. Также очевидно, что чем более длинная часть скважины находится внутри месторождения, тем больше нефти будет к такой скважине притекать. Поэтому сейчас большая часть буримых скважин – горизонтальные. Это не значит, что вся скважина горизонтальная – нет, наверху всё такой же “паук” с лапками вниз и в разные стороны. Условно вертикальная скважина “протыкает” месторождение вертикально, а условно горизонтальная скважина имеет довольно длинный (сотни метров) вскрывающий месторождение горизонтальный участок.

какое давление в скважине нефтяной

какое давление в скважине нефтяной

После бурения скважину отдают в освоение. Дело в том, что при бурении скважина и прилегающая к ней часть пласта оказывается забита всяким мусором и шламом: мелкими и крупными частицами породы, утяжелителями бурового раствора и так далее. Задача освоения – очистить скважину, очистить место соединения скважины с пластом, очистить прилегающую часть пласта (призабойную зону) так, чтобы то, что мы хотим добывать или закачивать, не испытывало затруднений на своём пути. После освоения скважина готова к добыче: спускай длинную насосно-компрессорную трубу (НКТ), на которой находится насос, открывай задвижку на самой скважине, включай насос и готовь ёмкости или трубопровод.

Гидравлический разрыв пласта (ГРП)

Правда, даже если вы сделаете всё в точности как описано выше, ёмкость вам понадобится маленькая, а трубопровод тоненький. Всё потому, что большинство месторождений, находящихся в разработке сейчас, являются настолько плохими (низкопроницаемыми), что бурение обычных вертикальных или даже горизонтальных скважин становится экономически неэффективным. Причём хорошо, если просто экономически неэффективным – в конце концов, всегда можно напечатать долларов и раздать бедным сланцевым компаниям – а вот если энергетически неэффективным (когда в добываемой нефти энергии меньше, чем требуется потратить на бурение и добычу), то совсем пиши пропало. На помощь пришла технология гидравлического разрыва пласта.

Суть гидроразрыва пласта (ГРП) заключается в следующем. В скважину под большим давлением (до 650 атм. или даже 1000 атм.) закачивают специальную жидкость, похожую на желе (собственно, это и есть желе). Это давление разрывает пласт, раздвигая слои породы. Но на той глубине, где обычно производится ГРП, порода сильнее сдавлена сверху, чем с боков, поэтому давлению проще раздвинуть её в стороны, чем вверх. Трещина получается почти плоская и вертикальная, при этом ширина её составляет считанные миллиметры, высота – десятки метров, а длина может доходить до нескольких сотен метров. Затем вместе с жидкостью начинает подаваться пропант – похожая на песок смесь крепких керамических гранул диаметром от долей миллиметров до миллиметров. Цель ГРП – закачать побольше пропанта в пласт так, чтобы образовалась очень хорошо проницаемая область, соединённая со скважиной. Жидкость, конечно, утечёт в пласт, а пропант останется там, куда успел дойти и не даст трещине полностью сомкнуться, обеспечивая высокопроводящий канал. Если до ГРП нефть в скважину притекала только со стенки самой скважины, то после ГРП нефть притекает со всей (ну может и не со всей, а может только с половины, точно никто не скажет) поверхности трещины. То есть площадь с которой притекает нефть, после ГРП увеличивается где-то в 1000 раз. А значит растёт (пусть и не в 1000 раз) и дебит скважины, что в конечном итоге позволяет разрабатывать месторождения, которые ранее считались нерентабельными.

какое давление в скважине нефтяной

Современные технологии дошли до того, что позволяют сделать на скважине не одну трещину ГРП, а целый набор, называемый стадиями (чемпионские скважины сейчас имеют длину горизонтального участка до 2000 м. и до 30-40 трещин ГРП).

Физико-химические свойства нефтесодержащей породы

какое давление в скважине нефтяной

Важно понимать, что и пористость, и все остальные описываемые далее параметры, не являются на самом деле одним числом, которое справедливо для всего месторождения. Это показатели, которые зависят от самой породы и пропитывающих её флюидов, и, конечно же, меняются от точки к точке, потому что само месторождение практически всегда неоднородно (пусть и масштаб этой неоднородности может быть очень разным). Там, где в пределах месторождения залегают глины, пористость будет мала, где залегают песчаники – там пористость будет велика, и так далее. Кстати, мы всё равно не сможем описать каждый кубический сантиметр породы, поэтому от реальности при моделировании нам придётся отступить, и считать, что на каком-то масштабе (например, в ячейках размером 10 метров на 10 метров на 1 метр) свойства породы и всего остального не меняются.

Второй важный показатель – проницаемость породы. Она показывает способность породы пропускать сквозь себя флюид. Флюид, кстати, – это то, что может течь, жидкость или газ. Когда пустот в породе мало, порода не пропускает сквозь себя флюид. Мысленно представим, что пустот в породе становится всё больше и больше: начиная с определённого момента отдельные пустоты начинают соединяться друг с другом и происходит перколяция – возникают каналы, по которым флюид может начинать двигаться. В быту мы часто сталкиваемся с пористыми материалами с высокой и низкой проницаемостью: губку для посуды легко “продуть” насквозь, хлеб уже больше сопротивляется попыткам продуть сквозь него воздух, а продуть насквозь пробку не легче, чем надуть резиновую грелку. Измеряется она в единицах дарси, но чаще в ходу миллидарси мД и нанодарси нД.

Во всех этих случаях можно заметить следующие закономерности. Через одни материалы (с высокой проницаемостью) всё фильтруется легче, чем через другие – и жидкости, и газы. Кроме этого, газы вообще фильтруются легче, чем жидкости. Да и среди жидкостей всё не так однозначно – любой может заметить в домашних условиях, что жидкий гелий (у любой рачительной хозяйки в холодильнике всегда есть) фильтруется гораздо легче, чем вода… а вода фильтруется гораздо легче, чем, например, кисель. Это происходит потому, что на скорость фильтрации влияет не только проницаемость (через что фильтруется), но и вязкость (что фильтруется).

какое давление в скважине нефтяной

Нефтяники всё время говорят про фильтрацию, используя именно это слово, но нужно привыкнуть к его особенному значению. Кофе фильтруется через бумажную салфетку, оставляя на ней частицы зёрен, но нефть, газ и флюиды фильтруются через породу немного в другом смысле. Слово “фильтруется” в нефтянке надо понимать просто как “течёт сквозь”.

Во всех приведённых примерах чтобы что-то начинало продуваться, мы начинали дуть, то есть прикладывать разность давлений. Если взять сантехническую трубу, набить её пористой средой и приложить к одному концу трубы повышенное давление газа или жидкости (с другой стороны будет обычное, атмосферное), то закон Дарси утверждает, что скорость фильтрации (дебит, то есть расход продуваемого флюида в секунду) будет пропорциональна проницаемости и перепаду давления и обратно пропорциональна вязкости и длине трубы. Если в два раза увеличить длину трубы, для сохранения такой же скорости потока нужно в два раза увеличить перепад давления, а если в два раза увеличить вязкость продуваемого газа или жидкости, то для сохранения скорости продува нужно в два раза увеличить проницаемость продуваемой среды.

Как связана пористость и проницаемость?

Во-первых, для реальных материалов, в том числе для горных нефтенасыщенных пород, они действительно друг с другом чаще всего коррелируют. Во-вторых, правильнее говорить, что пористость является причиной для проницаемости. Очевидно, что если пористость равна нулю, то и проницаемость тоже равна нулю. Но вот все остальные зависимости – скорее статистические. Да, действительно, чаще всего, чем больше пористость, тем больше и проницаемость, и вообще, чаще всего пористость и проницаемость связаны экспоненциальной статистической зависимостью (обратите внимание, что на картинке одна ось – логарифмическая). Однако техногенные вещества могут эту зависимость нарушать: так аэрогель имеет высокую пористость (90-99%), но очень низкую проницаемость (я думаю, меньше 1 нД).

какое давление в скважине нефтяной

На что влияет проницаемость? На скорость добычи, конечно. Насос, спущенный в скважину очень быстро “выбирает” нефть вокруг себя и снижает давление в призабойной (прилегающей к нижней части скважины) зоне, а дальше в игру вступает проницаемость. Если она достаточно высока, то перепад давления, созданный насосом, вызывает фильтрацию пластовой жидкости из дальней зоны, а если проницаемость мала, то сколько ни снижай насосом давление в призабойной зоне (а у давления нет верхнего предела, но очень даже есть нижний – создать давление ниже нуля атмосфер ещё никому не удавалось!), существенный приток не вызовешь. Гипотетически, если выкопать скважину глубиной два километра в породе с нулевой проницаемостью (говорю же – гипотетически), то скважину можно полностью осушить, и на дне её будет то же самое атмосферное давление (ну ладно, чуть больше), но ничего никуда течь не будет.

В итоге, в так (неправильно) называемых “сланцевых” месторождениях нетрадиционной нефти с их крайне низкой проницаемостью бурить обычные скважины бесполезно: нефть есть, её много, но из-за низкой проницаемости скорость фильтрации такая низкая, что скважины дают мизер, не окупающий даже их эксплуатацию. Что делать? Увеличивать площадь скважины, но не увеличивая её диаметр (обрушится!), а создавая в пласте соединённую со скважиной открытую трещину ГРП, пусть и тонкую, но с большой площадью стенок. И даже это позволяет добывать нефть только с того объёма, который хоть как-то трещинами был затронут, а с соседнего кубокилометра так ничего и не притечёт.

Итак, пористость определяет теоретический доступный к добыче объём месторождения, а проницаемость определяет скорость фильтрации нефти к скважине. Третий важный параметр, описывающий свойства нефтесодержащей породы – это насыщенность, в частности, нефтенасыщенность. Пористость описывает объем “пустоты” в породе, которую может занимать любой подвижный агент – хоть жидкость, хоть газ. Но таких кандидатов в месторождении несколько: это может быть действительно газ, в условиях месторождения это чаще всего природные газообразные углеводороды (метан, этан, пропан и так далее), или какой-нибудь техногенный углекислый газ, если его уже успели закачать. И это может быть, собственно, нефть и вода. Откуда там возьмётся вода? Правильный вопрос на самом деле – откуда там взялась нефть, потому что вода там была с самого начала: напоминаю, когда-то всё это было дном океана. Это нефть в ловушку месторождения пришла и вытеснила воду, но вытеснила не всю воду, что там изначально была. В итоге когда мы начинаем разрабатывать месторождение, часть порового объёма в любой точке может быть занята нефтью, часть газом, а часть водой.

какое давление в скважине нефтяной

Доля порового объёма, занимаемая нефтью – это и есть нефтенасыщенность. Особенность этого показателя в том, что он может меняться в процессе разработки месторождения. Когда через нагнетательные скважины начинают закачивать воду, нефтенасыщенность в разных точках месторождения начинает меняться.

Кроме нефтенасыщенности есть ещё и газонасыщенность – доля свободного газа в поровом объёме (какое-то количество газа, кроме этого, ещё и растворено в нефти – оно учитывается в другом месте). В каких-то месторождениях есть свободный газ (он скапливается в верхней части месторождения в виде так называемой газовой шапки), в каких-то нет. Какая-то часть порового объёма, кроме этого, обязательно занята водой – доля этого объёма называется водонасыщенностью. В любом случае, сумма нефте-, газо- и водонасыщенности всегда равна единице, потому что – а чем ещё может быть занят поровый объём между крупинками породы?

Следующим важным физическим параметром, влияющим на добычу нефти, является так называемое пластовое давление – давление флюида между частичками породы в каждой точке месторождения. Сами частички ещё испытывают на себе геостатическое давление “скелета” всей породы, что ещё лежит сверху, но это уже совсем другая история.
Нефтяники любят высокое давление и не любят низкое давление, потому что давление – это накопленная энергия, которой можно воспользоваться. Иногда нефть находится в месторождении под таким высоким давлением, что её, по сути, и качать не надо – достаточно добуриться скважиной до месторождения, и пластовое давление начнёт самостоятельно выталкивать нефть на поверхность: скважина даст фонтан нефти – только и успевай подставлять вёдра и тазики, нефть хлещет сама, без каких-либо затрат электричества на добычу!

какое давление в скважине нефтяной

Давление тесно связано с таким показателем, как сжимаемость. Мысленно представим себе колбу, наполненную, например, газом. Пусть давление там равно атмосферному. Затолкаем туда ещё 1% объёма газа и посмотрим, как изменилось давление. Если у вас нет под руками манометра, придётся поверить на слово – изменится не очень сильно (вы удивитесь — но на на тот же 1%). Возьмите пустую бутылку 0.7 (можно взять полную и предварительно её опустошить, но тогда дальнейшие опыты могут столкнуться с проблемами) и убедитесь, что немного воздуха туда выдохнуть всегда можно: газ очень хорошо сжимаем, его сжимаемость велика. А вот если газ заменить на жидкость, попытка впихнуть ещё немного жидкости в полную колбу в случае успеха, скорее всего, закончится печально: давление вырастет моментально и очень сильно, потому что жидкость плохо сжимается, её сжимаемость мала.
Можно сказать, что сжимаемость позволяет накапливать упругую энергию сжатия в веществе, и именно сжимаемость гораздо больше, чем давление, определяет, сколько энергии в сжатой среде накоплено. Если сжимаемость велика, энергии можно накопить много. Если сжимаемость мала, энергии много не накопишь. Представьте баллон с манометром, показывающим 220 атмосфер давления внутри. Если эту энергию пустить в дело, например, засунуть в ракету, то высоко ли она полетит? Оказывается, всё определяется не тем, сколько атмосфер давления, а тем, что там внутри сжато. Если там воздух, ракета взлетит, а если только вода – не взлетит. Посмотрите, как летают пневмогидравлические ракеты и подумайте, зачем они “пневмо” и зачем гидравлические. Тот же самый принцип используется в гидроаккумуляторах в домашней системе водоснабжения – вода не позволяет накопить много энергии сжатия, чтобы не включать каждый раз насос, когда вы открываете кран, а газ – легко.

Сжимаемость нефти больше сжимаемости воды, но гораздо меньше сжимаемости газа, поэтому при добыче нефти, если не замещать доставаемый объём из месторождения чем-то ещё, пластовое давление очень быстро падает. Ещё, когда говорят о сжимаемости, нужно держать в уме, что при наличии породы и различных насыщающих агентов (воды, нефти, газа), сжимаемость (разная) есть у них всех, и кроме этого, можно говорить об общей сжимаемости всей этой системы.

Газовая шапка на месторождении часто играет ту же самую роль аккумулятора, что воздух в пневмогидравлической ракете, поэтому случайно стравить газовую шапку месторождения – значит потерять ту значительную часть энергии, которая могла бы выдавливать в скважины нефть, а еще к тому же пустить нефть туда, где раньше был газ. А всем известно, если пролить куда-то сметану из банки, а потом попытаться собрать ее обратно, чтобы мама не ругалась… часть сметаны обратно собрать не получится, и с нефтью то же самое.

В следующей части мы расскажем, как месторождения образовывались, что с ними происходит в процессе добычи, а также изучим физико-химические свойства нефти, воды и газа.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *