какое давление в скважине нефтяной
Поддержание пластового давления (ППД) на нефтяных залежах
Схема системы ППД для подготовки, транспортировки, закачки рабочего агента.
1.1. Принципиальная схема системы ППД
Система ППД представляет собой комплекс технологического оборудования необходимый для подготовки, транспортировки, закачки рабочего агента в пласт нефтяного месторождения с целью поддержания пластового давления и достижения максимальных показателей отбора нефти из пласта.
Система ППД должна обеспечивать:
— необходимые объемы закачки воды в пласт и давления ее нагнетания по скважинам, объектам разработки и месторождению в целом в соответствии с проектными документами;
— подготовку закачиваемой воды до кондиций (по составу, физико-химическим свойствам, содержанию мех. примесей, кислорода, микроорганизмов), удовлетворяющих требованиям проектных документов;
— проведение контроля качества вод системы ППД, замеров приемистости скважин, учета закачки воды как по каждой скважине, так и по группам, пластам и объектам разработки и месторождению в целом;
— герметичность и надежность эксплуатации системы промысловых водоводов, применение замкнутого цикла водоподготовки и заводнения пластов с использованием сточных вод;
— возможность изменения режимов закачки воды в скважины, проведения ОПЗ нагнетательных скважин с целью повышения приемистости пластов, охвата пластов воздействием заводнения, регулирование процесса вытеснения нефти к забоям добывающих скважин.
Система ППД включает в себя следующие технологические узлы (см. рис.10.1)
— систему нагнетательных скважин;
— систему трубопроводов и распределительных блоков (ВРБ);
— станции по закачке агента (БКНС), а также оборудование для подготовки агента для закачки в пласт.
Рис.1.1.1. Принципиальная схема системы ППД
1.2. Система трубопроводов ППД
К трубопроводам системы поддержания пластового давления относятся:
— нагнетательные линии (трубопровод от ВРБ до устья скважины);
— водоводы низкого давления (давление до 2 МПа);
— водоводы высокого давления (в водоводах высокого давления нагнетание воды осуществляется насосными агрегатами);
— внутриплощадочные водоводы (водоводы площадочных объектов).
Транспортируемой продукцией трубопроводов является агрессивная смесь вод, содержащая: механические примеси, серу, кальцит и другие вредные вещества.
Технологии сбора и транспорта продукции
Подача воды на блочные кустовые насосные станции (БКНС) осуществляется из нескольких источников:
— по водоводам низкого давления подается пластовая вода (УПСВ и ЦППН (ЦПС));
— по водоводам низкого давления подается вода из водозаборных скважин;
— из открытых водоемов по водоводам низкого давления подается пресная вода.
Рис.1.2.1. Кольцевая (а) и лучевая (б) водораспределительные системы 1 водоочистная станция; 2 магистральный водовод; 3 водовод высокого давления; 4 нагнетательная линия; 5 колодец; 6 нагнетательные скважины; 7 подводящие водоводы; 8 подземные резервуары чистой воды; 9 кустовая насосная станция; 10 перемычка
Из БКНС рабочий агент (вода) через водораспределительные блоки (ВРБ) по водоводам высокого давления и нагнетательным линиям скважин подается для закачки в пласт с целью поддержания пластового давления.
Основные технологические параметры
Конструкция промысловых трубопроводов (диаметр, толщина стенки), способ их прокладки, материал для их изготовления определяются проектной организацией и обеспечивают:
— безопасную и надежную эксплуатацию;
— промысловый сбор и транспорт вод системы ППД в нагнетательные скважины;
— производство монтажных и ремонтных работ;
— возможность надзора за техническим состоянием водоводов;
— защиту от коррозии, молний и статического электричества;
— предотвращение образования гидратных и других пробок.
Рабочее давление в трубопроводах системы ППД
Размеры и масса нефтепроводных труб (по ГОСТ 3101 46) приведены в табл. 1.3.1. Нефтепроводные трубы испытываются на гидравлическое давление не более 40 МПа, рассчитываемое по формуле
где Р гидравлическое давление в МПа; δ минимальная толщина стенки в мм.; ơ допускаемое напряжение, принимаемое равным 35% предела прочности, в кг/мм 2 ; d внутренний диаметр трубы, в мм.
Графитовые смазки для резьбовых соединений труб
Для смазывания резьбовых соединений труб применяют графитовые смазки следующих составов:
1) 5 массовых частей машинного масла, 1 массовая часть графитового порошка (смесь тщательно размешивается до мазеобразного состояния);
2) 50…60 % графитового порошка, 5% технического жира, 1,5 % каустической соды крепостью 32 градусов Ве, 33,5 43,5 % машинного масла (все составляющие части берутся в процентах к общей массе);
3) 24% солидола, 36% графита, 8% известкового молока, 2% канифоли (все составные части берутся в процентах к общей массе).
Размеры и масса нефтепроводных труб
1.4. Насосные станции и установки для закачки воды
Для закачки воды используются насосные станции и установки, базирующиеся, в основном, на центробежных поршневых насосных агрегатах (рис. 1.4.1).
Описание конструкции и принцип действия БКНС
Насосный блок включает в себя в качестве основных элементов центробежные многоступенчатые секционные насосы типа ЦНС-180 или ЦНС-500, основные показатели которых, в зависимости от числа ступеней, приведены в табл.1.4.1. Насосный блок включает электропривод насоса (синхронного типа серии СТД со статическим возбуждением или асинхронного типа серии АРМ), масляную установку для насосного агрегата, осевой вентилятор с электроприводом, пост местного управления с кнопкой аварийного останова, стенд приборов, запорно-регулирующую арматуру насосного агрегата, технологические трубопроводы.
Блок напорной гребенки (БГ), предназначенный для учета и распределения поступающей от насоса ТЖ по напорным трубопроводам, размещают в отдельном цельнометаллическом боксе на расстоянии не менее чем 10 м от остальных блоков. Включает в себя распределительный коллектор, коллектор обратной промывки, пункт управления, расходомер с сужающим устройством, запорный вентиль, вентилятор, площадку для обслуживания, электропечь.
Перспективным направлением является применение гидропроводных модульных насосов с «абсолютной» регулируемостью подачи.
Электропровод и кабели уложены в металлических коробах, стальных трубах, гибких металлорукавах. В БА электропроводы (стянутые в жгуты) и кабели проложены в лотках под настилом, доступ к которым осуществляется через люки.
Работа станции происходит следующим образом. Технологическая вода через всасывающий трубопровод подается на вход центробежного насоса ЦНС-180. От насоса по напорному трубопроводу вода подается в БГ, где распределяется на восемь, пять или четыре водонапорных водовода (в зависимости от типа БГ) и далее подается на нагнетательные скважины.
Для сброса воды из водоводов при ремонте БГ имеется специальный коллектор. Насосные агрегаты с насосами ЦНС 180-1900 и ЦНС 180-1422 снабжены индивидуальными маслосистемами, обеспечивающими принудительную подачу масла для смазки и охлаждения подшипников насоса и электродвигателя.
Система водяного охлаждения предусматривает:
— охлаждение масла при принудительной смазке подшипников насосного агрегата НБ;
— охлаждение подшипников НА с насосом ЦНС- 1050;
— подачу воды для охлаждения и запирания сальников концевых уплотнений насосов ЦНС-180 в случае падения давления во всасывающем патрубке насоса до 0,1 МПа, а также охлаждение электродвигателей с ЗЦВ.
Из резервуара сточная вода периодически перекачивается основными насосами БД ЦНСК-60/254 на вход насосов ЦНС-180.
В БА установлена аппаратура, обеспечивающая пуск, контроль основных параметров и эксплуатацию станции, аппаратуры распределения электроэнергии, щитов управления двигателями, отопления и дренажных насосов. Измерение, запись давления и расхода воды. поступающей в нагнетательные скважины производится расходомерными устройствами, расположенными на каждом водоводе БГ.
В качестве основного варианта рассмотрим насосный блок с принудительной смазкой подшипников насосного агрегата НА (давление на выкупе насосов выше 10 МПа).
— насосный агрегат НА, состоящий из насоса типа ЦНС-180 и электродвигателя;
— маслоустановка и трубопроводы системы смазки с арматурой;
— трубопроводы и арматура технологической воды;
— трубопроводы и арматура системы охлаждения;
— трубопроводы подпора и охлаждения сальников насоса;
— кнопочный пост управления маслоустановкой,
— кнопочный пост управления электроприводной задвижкой;
— короба и трубы электропроводки,
— кнопочный пост управления вентиляцией.
Установленное оборудование смонтировано и закреплено на санях и ограждающих конструкциях блока.
Для защиты проточной части насоса от крупных механических примесей во всасывающем патрубке установлен сетчатый фильтр.
На всасывающем трубопроводе технологической воды установлены клиновая задвижка типа ЗКЛ2 и сетчатый фильтр. На напорном трубопроводе установлены обратный клапан и электроприводная задвижка В-407Э. В верхней точке напорного трубопровода установлен вентиль для стравливания воздуха.
Трубопроводы системы охлаждения предназначены для подвода охлаждающей воды к маслоохладителю и воздухоохладителям двигателей с ЗЦВ. От системы охлаждения вода подается вода для запирания и охлаждения концевых сальниковых уплотнений насоса при падении давления а приемном патрубке насоса ниже 0,1 МПа.
При работе насоса с давлением во входном патрубке от 0,6 до 3,0 МПа происходит разгрузка сальников с отводом воды через щелевые уплотнения насоса в безнапорную емкость. Отвод воды из камеры гидропяты насоса производится во всасывающий трубопровод. Дренаж от концевых уплотнений насоса производится в дренажный бак, установленный в БД.
Местный контроль технологических и эксплуатационных параметров работы насосных агрегатов, настройка датчиков сигнализации осуществляются по манометрам и показаниям амперметра цепи возбуждения двигателя типа СТД.
После пуска кнопкой «пуск со щита управления, установленного в БА, включается масляный насос, и при достижении давления в конце масляной линии 0,05. 0,1 МПа начинается запуск основного насоса. После достижения давления за насосом 0,9 Рном начинает открываться электрозадвижка на линии нагнетания. После открытия задвижки в течение 60с насос выходит на установившийся режим работы.
При работе станции за счет амортизаторов и упругих компенсирующих вставок на трубопроводах снижается передача вибрации от насосного агрегата трубопроводам, несущим конструкциям, основаниям блоков и фундаментам, а также уменьшается передача шума.
— 2 насосных агрегата с насосами ЦНСК-60/264;
— 2 самовсасывающих насоса 1СЦВ-1,5М;
— 4 блока печей ПЭТ-4;
— защитные короба электропроводки;
— трубопроводы и арматура технологической воды.
Насосы 1СЦ8-1,5М предназначены для откачки воды из дренажного бака в резервуар сточных вод. Насосы типа ЦНСК-60/264 служат для откачки воды из резервуара сточных вод во всасывающий трубопровод НБ.
1 насос является резервным. Блок напорной гребенки (БГ) служит для распределения технологической воды на скважины системы ППД. Разработано шесть типов блока напорной гребенки в зависимости от количества водоводов и типа устройства измерения расхода воды.
— устройство измерения расхода;
— элементы вентиляции и отопления,
— кнопочный пост управления вентиляцией.
Блок трубопроводов состоит из напорного коллектора с регулирующими вентилями, высоконапорных водоводов, сбросного коллектора, вентилей и устройства измерения расхода. Изменение расхода технологической воды осуществляется регулирующими вентилями, установленными на напорном коллекторе.
В зависимости от количества водоводов блоки напорных гребенок подразделяются на 8-, 5- и 4-водоводные. 5- и 4-водоводные блоки напорной гребенки могут поставляться отдельно от станции. По типу устройства измерения расхода воды блоки гребень поставляются с: сужающим устройством в комплекте со щитом дифманометров; аппаратурой Электрон-2М; датчиком расхода ДРК 1-100-50-5.
В таблице 1.4.3 приведена техническая характеристика четырех основных групп блочных кустовых насосных станций: БКНС¥100; БКНС¥150, БКНС¥200; БКНС¥500.
Центробежные насосы секционные типа ЦНС
В табл. 1.4.4 приведены технические характеристики центробежных секционных насосов производительностью 38 и 60 м 3 /час. В табл. 1.4.5 приведены технические характеристики центробежных секционных насосов производительностью 105, 180 и 300 м 3 /час.
Состав блоков БКНС
* С замкнутым циклом вентиляции.
** В комплект заводской поставки не входят.
Нефтянка для инженеров, программистов, математиков и широких масс трудящихся, часть 2
Сегодня мы расскажем о том, как буровые станки бороздят просторы Сибири, из чего состоит скважина; зачем, для того, чтобы добыть что-нибудь нужное, надо сначала закачать в пласт что-нибудь ненужное; и из чего, собственно, сделана нефтяная залежь. Это вторая часть из серии статей для будущих математиков-программистов, которым предстоит решать задачи, связанные с моделированием нефтедобычи и разработкой инженерного ПО в области сопровождения нефтедобычи.
Первую часть серии можно прочесть здесь
Конструкция скважины
Скважина – это отверстие в земле, в земной коре (в почве, потом в глине, потом во всяких разных породах – все видели слоистость земли на стенке любого строительного котлована), пробуренное до глубины залегания месторождения с целью выкачивания из месторождения чего-нибудь нужного (нефти или газа) или закачивания в месторождение чего-нибудь ненужного (воды или углекислого газа). Места, где нефть можно просто черпать с поверхности земли или поднимать воротом из неглубоких колодцев, почти закончились: теперь до нефти нужно сначала добуриться.
Скважину бурят буровой установкой, которая насаживает на трубу специальное буровое долото с вращающимися резцами. В зависимости от способа, может вращаться сама труба вместе с резцами, или труба может не вращаться, но в буровой инструмент подаётся по той же трубе (бурильной колонне) электричество или буровой раствор под давлением. В последнем случае буровой раствор и приводит в движение долото, и он же обратным потоком жидкости выносит на поверхность всё, что там резец набурит. Не знаю, как вы, а я был в своё время восхищён такой инженерной идеей. Там ещё и телеметрия передаётся обратно звуковыми волнами тоже по потоку жидкости.
В процессе бурения можно увеличивать или уменьшать вертикальную нагрузку на долото (то есть, давить вниз) для изменения скорости проходки, а также потихоньку отклонять буровую колонну для того, чтобы направлять скважину в ту или иную сторону. По понятным причинам для бурения нескольких скважин удобнее всего начинать бурение в одном и том же месте, называемом кустом скважин: удобно подвозить к одному месту руду, дерево, ртуть, серу, кристаллы, золото материалы, бригады, оборудование, подводить электричество, а после запуска всех скважин в работу – собирать нефть. Делать это с десятка скважин на одном кусту очевидно удобнее, чем с десятка скважин, рассредоточенных на необъятных просторах торфяных болот Сибири. Поэтому начинают бурить все скважины куста с одной площадки, и постепенно разводят их по траекториям в разные стороны, чтобы на поверхности все траектории скважин куста сходились в одном месте, но внизу равномерно распределялись по какому-то заданному участку месторождения. Это означает, что чаще всего у набора скважин с одного куста есть несколько типовых участков траектории: начальный участок продолжается участком, где скважины разводятся по разным азимутам. Если кто забыл, азимут – это направление, на которое стрелка компаса указывает, точнее – отклонение от этой стрелки. Потом идёт участок набора глубины, потом участок хитрого входа в нефтесодержащий пласт, ну и собственно, участок скважины внутри нефтесодержащего пласта, где в скважину через её стенки поступает нефть.
Чаще всего месторождение “в длину” и “в ширину”, то есть по латерали, гораздо больше, чем “в высоту”, то есть по вертикали. По латерали месторождение может простираться на километры, десятки и сотни километров, а по вертикали – на метры, десятки и сотни метров. Также очевидно, что чем более длинная часть скважины находится внутри месторождения, тем больше нефти будет к такой скважине притекать. Поэтому сейчас большая часть буримых скважин – горизонтальные. Это не значит, что вся скважина горизонтальная – нет, наверху всё такой же “паук” с лапками вниз и в разные стороны. Условно вертикальная скважина “протыкает” месторождение вертикально, а условно горизонтальная скважина имеет довольно длинный (сотни метров) вскрывающий месторождение горизонтальный участок.
После бурения скважину отдают в освоение. Дело в том, что при бурении скважина и прилегающая к ней часть пласта оказывается забита всяким мусором и шламом: мелкими и крупными частицами породы, утяжелителями бурового раствора и так далее. Задача освоения – очистить скважину, очистить место соединения скважины с пластом, очистить прилегающую часть пласта (призабойную зону) так, чтобы то, что мы хотим добывать или закачивать, не испытывало затруднений на своём пути. После освоения скважина готова к добыче: спускай длинную насосно-компрессорную трубу (НКТ), на которой находится насос, открывай задвижку на самой скважине, включай насос и готовь ёмкости или трубопровод.
Гидравлический разрыв пласта (ГРП)
Правда, даже если вы сделаете всё в точности как описано выше, ёмкость вам понадобится маленькая, а трубопровод тоненький. Всё потому, что большинство месторождений, находящихся в разработке сейчас, являются настолько плохими (низкопроницаемыми), что бурение обычных вертикальных или даже горизонтальных скважин становится экономически неэффективным. Причём хорошо, если просто экономически неэффективным – в конце концов, всегда можно напечатать долларов и раздать бедным сланцевым компаниям – а вот если энергетически неэффективным (когда в добываемой нефти энергии меньше, чем требуется потратить на бурение и добычу), то совсем пиши пропало. На помощь пришла технология гидравлического разрыва пласта.
Суть гидроразрыва пласта (ГРП) заключается в следующем. В скважину под большим давлением (до 650 атм. или даже 1000 атм.) закачивают специальную жидкость, похожую на желе (собственно, это и есть желе). Это давление разрывает пласт, раздвигая слои породы. Но на той глубине, где обычно производится ГРП, порода сильнее сдавлена сверху, чем с боков, поэтому давлению проще раздвинуть её в стороны, чем вверх. Трещина получается почти плоская и вертикальная, при этом ширина её составляет считанные миллиметры, высота – десятки метров, а длина может доходить до нескольких сотен метров. Затем вместе с жидкостью начинает подаваться пропант – похожая на песок смесь крепких керамических гранул диаметром от долей миллиметров до миллиметров. Цель ГРП – закачать побольше пропанта в пласт так, чтобы образовалась очень хорошо проницаемая область, соединённая со скважиной. Жидкость, конечно, утечёт в пласт, а пропант останется там, куда успел дойти и не даст трещине полностью сомкнуться, обеспечивая высокопроводящий канал. Если до ГРП нефть в скважину притекала только со стенки самой скважины, то после ГРП нефть притекает со всей (ну может и не со всей, а может только с половины, точно никто не скажет) поверхности трещины. То есть площадь с которой притекает нефть, после ГРП увеличивается где-то в 1000 раз. А значит растёт (пусть и не в 1000 раз) и дебит скважины, что в конечном итоге позволяет разрабатывать месторождения, которые ранее считались нерентабельными.
Современные технологии дошли до того, что позволяют сделать на скважине не одну трещину ГРП, а целый набор, называемый стадиями (чемпионские скважины сейчас имеют длину горизонтального участка до 2000 м. и до 30-40 трещин ГРП).
Физико-химические свойства нефтесодержащей породы
Важно понимать, что и пористость, и все остальные описываемые далее параметры, не являются на самом деле одним числом, которое справедливо для всего месторождения. Это показатели, которые зависят от самой породы и пропитывающих её флюидов, и, конечно же, меняются от точки к точке, потому что само месторождение практически всегда неоднородно (пусть и масштаб этой неоднородности может быть очень разным). Там, где в пределах месторождения залегают глины, пористость будет мала, где залегают песчаники – там пористость будет велика, и так далее. Кстати, мы всё равно не сможем описать каждый кубический сантиметр породы, поэтому от реальности при моделировании нам придётся отступить, и считать, что на каком-то масштабе (например, в ячейках размером 10 метров на 10 метров на 1 метр) свойства породы и всего остального не меняются.
Второй важный показатель – проницаемость породы. Она показывает способность породы пропускать сквозь себя флюид. Флюид, кстати, – это то, что может течь, жидкость или газ. Когда пустот в породе мало, порода не пропускает сквозь себя флюид. Мысленно представим, что пустот в породе становится всё больше и больше: начиная с определённого момента отдельные пустоты начинают соединяться друг с другом и происходит перколяция – возникают каналы, по которым флюид может начинать двигаться. В быту мы часто сталкиваемся с пористыми материалами с высокой и низкой проницаемостью: губку для посуды легко “продуть” насквозь, хлеб уже больше сопротивляется попыткам продуть сквозь него воздух, а продуть насквозь пробку не легче, чем надуть резиновую грелку. Измеряется она в единицах дарси, но чаще в ходу миллидарси мД и нанодарси нД.
Во всех этих случаях можно заметить следующие закономерности. Через одни материалы (с высокой проницаемостью) всё фильтруется легче, чем через другие – и жидкости, и газы. Кроме этого, газы вообще фильтруются легче, чем жидкости. Да и среди жидкостей всё не так однозначно – любой может заметить в домашних условиях, что жидкий гелий (у любой рачительной хозяйки в холодильнике всегда есть) фильтруется гораздо легче, чем вода… а вода фильтруется гораздо легче, чем, например, кисель. Это происходит потому, что на скорость фильтрации влияет не только проницаемость (через что фильтруется), но и вязкость (что фильтруется).
Нефтяники всё время говорят про фильтрацию, используя именно это слово, но нужно привыкнуть к его особенному значению. Кофе фильтруется через бумажную салфетку, оставляя на ней частицы зёрен, но нефть, газ и флюиды фильтруются через породу немного в другом смысле. Слово “фильтруется” в нефтянке надо понимать просто как “течёт сквозь”.
Во всех приведённых примерах чтобы что-то начинало продуваться, мы начинали дуть, то есть прикладывать разность давлений. Если взять сантехническую трубу, набить её пористой средой и приложить к одному концу трубы повышенное давление газа или жидкости (с другой стороны будет обычное, атмосферное), то закон Дарси утверждает, что скорость фильтрации (дебит, то есть расход продуваемого флюида в секунду) будет пропорциональна проницаемости и перепаду давления и обратно пропорциональна вязкости и длине трубы. Если в два раза увеличить длину трубы, для сохранения такой же скорости потока нужно в два раза увеличить перепад давления, а если в два раза увеличить вязкость продуваемого газа или жидкости, то для сохранения скорости продува нужно в два раза увеличить проницаемость продуваемой среды.
Как связана пористость и проницаемость?
Во-первых, для реальных материалов, в том числе для горных нефтенасыщенных пород, они действительно друг с другом чаще всего коррелируют. Во-вторых, правильнее говорить, что пористость является причиной для проницаемости. Очевидно, что если пористость равна нулю, то и проницаемость тоже равна нулю. Но вот все остальные зависимости – скорее статистические. Да, действительно, чаще всего, чем больше пористость, тем больше и проницаемость, и вообще, чаще всего пористость и проницаемость связаны экспоненциальной статистической зависимостью (обратите внимание, что на картинке одна ось – логарифмическая). Однако техногенные вещества могут эту зависимость нарушать: так аэрогель имеет высокую пористость (90-99%), но очень низкую проницаемость (я думаю, меньше 1 нД).
На что влияет проницаемость? На скорость добычи, конечно. Насос, спущенный в скважину очень быстро “выбирает” нефть вокруг себя и снижает давление в призабойной (прилегающей к нижней части скважины) зоне, а дальше в игру вступает проницаемость. Если она достаточно высока, то перепад давления, созданный насосом, вызывает фильтрацию пластовой жидкости из дальней зоны, а если проницаемость мала, то сколько ни снижай насосом давление в призабойной зоне (а у давления нет верхнего предела, но очень даже есть нижний – создать давление ниже нуля атмосфер ещё никому не удавалось!), существенный приток не вызовешь. Гипотетически, если выкопать скважину глубиной два километра в породе с нулевой проницаемостью (говорю же – гипотетически), то скважину можно полностью осушить, и на дне её будет то же самое атмосферное давление (ну ладно, чуть больше), но ничего никуда течь не будет.
В итоге, в так (неправильно) называемых “сланцевых” месторождениях нетрадиционной нефти с их крайне низкой проницаемостью бурить обычные скважины бесполезно: нефть есть, её много, но из-за низкой проницаемости скорость фильтрации такая низкая, что скважины дают мизер, не окупающий даже их эксплуатацию. Что делать? Увеличивать площадь скважины, но не увеличивая её диаметр (обрушится!), а создавая в пласте соединённую со скважиной открытую трещину ГРП, пусть и тонкую, но с большой площадью стенок. И даже это позволяет добывать нефть только с того объёма, который хоть как-то трещинами был затронут, а с соседнего кубокилометра так ничего и не притечёт.
Итак, пористость определяет теоретический доступный к добыче объём месторождения, а проницаемость определяет скорость фильтрации нефти к скважине. Третий важный параметр, описывающий свойства нефтесодержащей породы – это насыщенность, в частности, нефтенасыщенность. Пористость описывает объем “пустоты” в породе, которую может занимать любой подвижный агент – хоть жидкость, хоть газ. Но таких кандидатов в месторождении несколько: это может быть действительно газ, в условиях месторождения это чаще всего природные газообразные углеводороды (метан, этан, пропан и так далее), или какой-нибудь техногенный углекислый газ, если его уже успели закачать. И это может быть, собственно, нефть и вода. Откуда там возьмётся вода? Правильный вопрос на самом деле – откуда там взялась нефть, потому что вода там была с самого начала: напоминаю, когда-то всё это было дном океана. Это нефть в ловушку месторождения пришла и вытеснила воду, но вытеснила не всю воду, что там изначально была. В итоге когда мы начинаем разрабатывать месторождение, часть порового объёма в любой точке может быть занята нефтью, часть газом, а часть водой.
Доля порового объёма, занимаемая нефтью – это и есть нефтенасыщенность. Особенность этого показателя в том, что он может меняться в процессе разработки месторождения. Когда через нагнетательные скважины начинают закачивать воду, нефтенасыщенность в разных точках месторождения начинает меняться.
Кроме нефтенасыщенности есть ещё и газонасыщенность – доля свободного газа в поровом объёме (какое-то количество газа, кроме этого, ещё и растворено в нефти – оно учитывается в другом месте). В каких-то месторождениях есть свободный газ (он скапливается в верхней части месторождения в виде так называемой газовой шапки), в каких-то нет. Какая-то часть порового объёма, кроме этого, обязательно занята водой – доля этого объёма называется водонасыщенностью. В любом случае, сумма нефте-, газо- и водонасыщенности всегда равна единице, потому что – а чем ещё может быть занят поровый объём между крупинками породы?
Следующим важным физическим параметром, влияющим на добычу нефти, является так называемое пластовое давление – давление флюида между частичками породы в каждой точке месторождения. Сами частички ещё испытывают на себе геостатическое давление “скелета” всей породы, что ещё лежит сверху, но это уже совсем другая история.
Нефтяники любят высокое давление и не любят низкое давление, потому что давление – это накопленная энергия, которой можно воспользоваться. Иногда нефть находится в месторождении под таким высоким давлением, что её, по сути, и качать не надо – достаточно добуриться скважиной до месторождения, и пластовое давление начнёт самостоятельно выталкивать нефть на поверхность: скважина даст фонтан нефти – только и успевай подставлять вёдра и тазики, нефть хлещет сама, без каких-либо затрат электричества на добычу!
Давление тесно связано с таким показателем, как сжимаемость. Мысленно представим себе колбу, наполненную, например, газом. Пусть давление там равно атмосферному. Затолкаем туда ещё 1% объёма газа и посмотрим, как изменилось давление. Если у вас нет под руками манометра, придётся поверить на слово – изменится не очень сильно (вы удивитесь — но на на тот же 1%). Возьмите пустую бутылку 0.7 (можно взять полную и предварительно её опустошить, но тогда дальнейшие опыты могут столкнуться с проблемами) и убедитесь, что немного воздуха туда выдохнуть всегда можно: газ очень хорошо сжимаем, его сжимаемость велика. А вот если газ заменить на жидкость, попытка впихнуть ещё немного жидкости в полную колбу в случае успеха, скорее всего, закончится печально: давление вырастет моментально и очень сильно, потому что жидкость плохо сжимается, её сжимаемость мала.
Можно сказать, что сжимаемость позволяет накапливать упругую энергию сжатия в веществе, и именно сжимаемость гораздо больше, чем давление, определяет, сколько энергии в сжатой среде накоплено. Если сжимаемость велика, энергии можно накопить много. Если сжимаемость мала, энергии много не накопишь. Представьте баллон с манометром, показывающим 220 атмосфер давления внутри. Если эту энергию пустить в дело, например, засунуть в ракету, то высоко ли она полетит? Оказывается, всё определяется не тем, сколько атмосфер давления, а тем, что там внутри сжато. Если там воздух, ракета взлетит, а если только вода – не взлетит. Посмотрите, как летают пневмогидравлические ракеты и подумайте, зачем они “пневмо” и зачем гидравлические. Тот же самый принцип используется в гидроаккумуляторах в домашней системе водоснабжения – вода не позволяет накопить много энергии сжатия, чтобы не включать каждый раз насос, когда вы открываете кран, а газ – легко.
Сжимаемость нефти больше сжимаемости воды, но гораздо меньше сжимаемости газа, поэтому при добыче нефти, если не замещать доставаемый объём из месторождения чем-то ещё, пластовое давление очень быстро падает. Ещё, когда говорят о сжимаемости, нужно держать в уме, что при наличии породы и различных насыщающих агентов (воды, нефти, газа), сжимаемость (разная) есть у них всех, и кроме этого, можно говорить об общей сжимаемости всей этой системы.
Газовая шапка на месторождении часто играет ту же самую роль аккумулятора, что воздух в пневмогидравлической ракете, поэтому случайно стравить газовую шапку месторождения – значит потерять ту значительную часть энергии, которая могла бы выдавливать в скважины нефть, а еще к тому же пустить нефть туда, где раньше был газ. А всем известно, если пролить куда-то сметану из банки, а потом попытаться собрать ее обратно, чтобы мама не ругалась… часть сметаны обратно собрать не получится, и с нефтью то же самое.
В следующей части мы расскажем, как месторождения образовывались, что с ними происходит в процессе добычи, а также изучим физико-химические свойства нефти, воды и газа.