какое давление в парогенераторе с естественной циркуляцией

Паровые котлы с естественной циркуляцией

Опубликовано: 08 июля 2011 г.

М. Иванов

В паровых котлах для превращения питательной воды в пар применяются различные схемы циркуляции теплоносителя: естественная, многократная принудительная и прямоточная. Наибольшее распространение получили котлы с естественной циркуляцией.

Подписаться на статьи можно на главной странице сайта.

Технология получения пара предполагает последовательность нескольких физических процессов. Все начинается с подогрева питательной воды, которая поступает в котел при определенном давлении, создаваемом питательным насосом. Этот процесс происходит при однократном прохождении воды через трубы конвективной поверхности нагрева, называемой экономайзером (рис.1).
После экономайзера вода поступает в испарительные поверхности нагрева, которые располагают, как правило, в топочных камерах паровых котлов. Из названия этого элемента котла понятно, что здесь происходит образование пара, который затем в некоторых котлах поступает в пароперегреватель. Через обогреваемые дымовыми газами трубы пароперегревателя пар проходит однократно, а вот парообразующие поверхности нагрева могут быть разными. Чаще всего в котлах пароводяная смесь многократно проходит через обогреваемые трубки топочных экранов за счет естественной циркуляции или в результате многократно-принудительной циркуляции (с использованием особого насоса). В котлах, которые называют прямоточными, пароводяная смесь проходит через испарительные поверхности нагрева однократно, за счет давления, создаваемого питательным насосом.
Остановимся подробнее на особенностях процесса получения пара в котлах с естественной циркуляцией.
На рис. 1 приведена схема барабанного котла с естественной циркуляцией, выполненного по традиционной П-образной схеме. Питательная вода поступает в экономайзер, расположенный в конвективной шахте. Экономайзер является первой частью водопарового тракта котла: нагретая в нем вода поступает в барабан, который, в своей нижней части, соединен как с необогреваемыми опускными, так и с обогреваемыми подъемными трубами. По необогреваемым трубам котловая вода опускается к коллекторам, размещенным у нижней кромки топочной камеры. Из этих коллекторов вода поступает в вертикальные трубки топочных экранов. Именно здесь, благодаря мощному тепловому потоку от сгорания органического топлива, начинается собственно процесс парообразования. При однократном прохождении через топочные экраны испаряется не вся вода: в барабан возвращается пароводяная смесь. В объеме барабана происходит сепарация воды и пара. Пар поступает к потребителю или во входной коллектор пароперегревателя, а котловая вода вновь попадает в опускные трубы циркуляционного контура.

какое давление в парогенераторе с естественной циркуляцией

Рис. 1. Схема барабанного котла с естественной циркуляцией, работающего на пылевидном топливе:
1 – горелки; 2 – топочная камера; 3 – топочный экран; 4 – барабан; 5 – опускные трубы; 6 – фестон; 7 – пароперегреватель; 8 – конвективный газоход; 9 – экономайзер;10 – трубчатый воздухоподогреватель; 11 – нижние коллектора топочных экранов

Подъемно-опускное движение по контуру естественной циркуляции (т.е. по необогреваемым опускным и обогреваемым подъемным трубам) происходит вследствие разности плотностей котловой воды и пароводяной смеси.
Для повышения надежности циркуляции на барабанных котлах повышенного давления (17–18 МПа) применяют принудительное движение пароводяной смеси в топочных экранах (рис. 2, б). Как видно из приведенных схем, котел с принудительной циркуляцией отличается от котла с естественной циркуляцией (рис.2, а) наличием насоса для котловой воды. На этом же рисунке (2, в) показана схема прямоточного котла.

какое давление в парогенераторе с естественной циркуляцией

Рис. 2. Схема движения воды и водяного пара:
а) барабанный котел с естественной циркуляцией; б) барабанный котел с принудительной циркуляцией; в) прямоточный котел
1 – питательный насос; 2 – экономайзер; 3 – верхний барабан котла; 4 – опускные трубы; 5 – испарительные подъемные трубы; 6 – пароперегреватель; 7 – циркуляционный насос; 8 – нижний коллектор

В прямоточных котлах, которые не имеют барабана, а контур разомкнут, превращение воды в пар происходит за один проход нагревателя, и кратность циркуляции равняется единице. В барабанных котлах этот показатель выше. В котлах с принудительной циркуляцией, у которых имеются нагреватели в виде змеевиков, кратность циркуляции составляет обычно от 3 до 10. В котлах с естественной конвекцией этот параметр обычно составляет 10–50, а при малой тепловой нагрузке труб – 200–300.

Особенности и преимущества

Основным параметром, которым руководствуются при выборе марки парового котла с естественной циркуляцией (ПКЕЦ), является его паропроизводительность, измеряемая в т/ч или кг/ч. Широкий модельный ряд ПКЕЦ позволяет выбрать котлы с требуемой производительностью, начиная от нескольких килограммов до нескольких тонн пара в час. Важными показателями состояния водяного пара являются его давление и температура.
Широкий круг моделей ПКЕЦ позволяет генерировать водяной пар с избыточным давлением от десятых долей до нескольких десятков атмосфер. ПКЕЦ могут работать на различных видах органического топлива: природном газе, угле, дровах и древесных отходах, а также на жидком топливе – сырой (стабилизированной) нефти, мазуте, дизельном топливе. В ряде случаев используются особые топочные устройства, позволяющие ПКЕЦ работать на нескольких видах топлива. Кроме традиционного применения для генерации технологического пара, они широко используются в различных областях: на железнодорожном и водном транспорте, в пищевой, легкой и добывающей промышленности.
Основные достоинства ПКЕЦ – высокая надежность, простота эксплуатации, повышенная степень автоматизации и экономичности.
Создание условий надежности циркуляции в топочных экранах достигается ограничением рабочего давления котлоагрегата – обычно не выше 155 атм. Вызвано это тем, что при более высоком давлении сильно снижается разность плотностей пара и воды, в результате чего не обеспечивается эффективная циркуляция.
Современные ПКЕЦ производители комплектуют микропроцессорной системой управления и защиты. Например, система «Альфа-М» производства фирмы «Энергетик» (Москва) позволяет достичь простоты и удобства в обслуживании. Применение таких систем оптимизирует соотношение «топливо-воздух» при разных расходах топлива, что благоприятно сказывается и на эффективности производства тепловой энергии.
Котлы этого типа могут эксплуатироваться в различных климатических зонах, не требуют сложных пусконаладочных работ. Существенным преимуществом не слишком крупных современных моделей ПКЕЦ является их моноблочное исполнение. В такой конструкции предусматривается компактная установка на одной раме с агрегатом вентилятора, дымососа и питательного насоса. Сочетание высокой степени конструкторской проработки с точными системами управления и контроля позволяет достичь в ПКЕЦ высоких значений КПД, которые могут превышать 90 %.
В моноблочном исполнении котлы поставляются единым транспортабельным блоком – в собранном виде, в обмуровке и обшивке. Их монтаж относительно несложен. Компактность размещения оборудования не препятствует проведению текущего и аварийного ремонтов, а также осуществлению профилактических процедур – все узлы и детали доступны для обследования.

ПКЕЦ на российском рынке

На российском рынке паровых котлов, а также на всей территории СНГ чаще других можно встретить промышленные котлы с естественной циркуляцией, причем присутствует продукция как отечественных, так и зарубежных производителей. Котлы, произведенные в России, имеют в маркировке индекс «Е», отражающий принцип естественной циркуляции теплоносителя в этих моделях. По цене они более выигрышны в сравнении с зарубежными аналогами.
Паровые котлы серии «Е», выпускаемые ООО «ПТО» (Москва), – вертикально-водотрубные, с двумя барабанами, расположенными на одной вертикальной оси и соединенными между собой трубами диаметром 51 мм.
Котлы серии «Е» выпускаются в следующих модификациях, в зависимости от используемого топлива: Е 1,0-0,9 Г-З (Э) – для работы на природном газе, Е 1,0-0,9 М-З (Э) – для работы на мазуте, Е 1,0-0,9 Р-З (Э) – для работы на твердом топливе, Е 1,6-0,9 ГМН (Э) – для работы на газе или мазуте. Первая из групп цифр, следующая за индексом «Е», обозначает паропроизводительность (т/ч), вторая – давление пара в котле (МПа). Обозначение «Н» указывает на наличие в котле системы наддува.
Котлы серии «Е» предназначены для производства насыщенного водяного пара с рабочим давлением 8 атм. Этот пар потребляется различными предприятиями промышленности, транспорта, а также предприятиями сельского хозяйства для отопительных, технологических, хозяйственных и бытовых нужд.

какое давление в парогенераторе с естественной циркуляцией

ГК «Комплексные системы» (Петербург) предлагает паровые котлы серии «КЕ» – со слоевыми механическими топками производительностью от 2,5 до 10 т/ч. Эти котлы предназначены для выработки насыщенного или перегретого водяного пара, который находит применение для технологических нужд промышленных предприятий, а также в системах отопления, вентиляции и ГВС.
Серия «КЕ» подразделяется на модификации «КЕ-С», снабженные слоевыми топочными устройствами, и модификации «КЕ-МТ», в которых имеется топка предварительного скоростного горения.
Котлы серий «ДЕ» предлагает промышленная группа «Генерация» (г. Березовский, Свердловская обл.). Они могут работать на различных видах топлива (газ, мазут) и имеют производительность от 4 до 25 т/ч. Предназначены для выработки насыщенного или слабоперегретого пара, используемого для технологических нужд предприятий, а также для отопления, вентиляции и ГВС. Серия «МЕ» отличается от предыдущей серии тем, что котлы этой серии имеют большую на 20 % поверхность нагрева и, соответственно, более высокий КПД. Котлы этой же серии предлагает и компания «Теплоуниверсал» (Петербург).
Из зарубежных производителей можно назвать итальянскую фирму Garioni Naval, поставляющую на Российский рынок промышленные модели марки GMT/HP 200–2000, паропроизводительностью от 0,3 до 3,5 т/ч. Отличительная особенность котлов этой серии – величина рабочего давления получаемого пара, которая может меняться от 5 до 110 атм. Давление водяного пара в указанном диапазоне соответствует температуре теплоносителя от 152 до 318 °С, что позволяет применять котлы этой серии в различных отраслях промышленности.
Паровые котлы высокого давления с естественной циркуляцией типа НРВ (немецкая фирма BBS GmbH) имеют паропроизводительность от 0,3 до 8 т/ч. Водотрубные котлы этой серии способны производить насыщенный пар с рабочим давлением до 120 атм. Теплоноситель с такими параметрами обычно используется в химической, нефтехимической, пищевой, а также косметической промышленностях.
Представлены также паровые котлы низкого давления зарубежного производства. Так, фирма Viessmann (Германия) производит котлы марки Vitoplex 100-LS производительностью 0,26–2,2 т/ч на жидком или газообразном топливе, с рабочим давлением в котле 7 атм.

Статья опубликована в журнале «Промышленные и отопительные котельные и мини-ТЭЦ» № 2(7)` 2011

Источник

Паровые котлы с естественной циркуляцией. Техническое развитие паровых котлов. Современные паровые котлы (основные характеристики, назначение, конструкция).

Современные паровые котлы электрических станций можно разделить на два основных вида: котлы с естественной циркуляцией и котлы с принудительной циркуляцией; среди котлов второго типа наэлектростанциях России наибольшее распространение получили так называемые прямоточные котлы.

Принцип работы котла с естественной циркуляцией легко себе представить с помощью рисунка ниже. В барабан котла, представляющий собой стальной цилиндр, рассчитанный на высокое давление, непрерывно подводится питательная вода, предназначенная для образования из нее пара. Барабан имеет систему опускных (холодных) и подъемных (обогреваемых) трубок. Тепло, образовавшееся в результате сжигания топлива, подводится к подъемным (обогреваемым) трубкам, одна из которых показана на рисунке:

какое давление в парогенераторе с естественной циркуляцией

В результате подвода тепла вода в этой трубке испаряется — образуется насыщенный пар. Так как удельный вес пара во много раз меньше веса воды, то образовавшийся в подъемной трубке пар поднимается и заполняет объем барабана над уровнем питательной воды. На место испарившейся воды поступает новая ее порция через опускные необогреваемые трубки. Таким образом, через систему опускных и подъемных трубок происходит непрерывная циркуляция воды и пара, возникающая вследствие разности удельных весов воды и
именуется естественной, откуда возникло и наименование котла. Насыщенный пар, поступающий в барабан, непрерывно отводится из него, а вода подается и, таким образом, уровень питательной воды в барабане поддерживается постоянным.

На рисунке ниже представлена принципиальная схема современной котельной установки с естественной циркуляцией большой паропроизводительности. Топливо (обычно размолотый порошкообразный уголь) и необходимый для его сгорания воздух подаются через форсунки в топку котла. Образовавшиеся в результате горения топлива газы следуют по пути, указанному на рисунке ниже пунктирной линией, отсасываются дымососом (не показанном на схеме) и выбрасываются в атмосферу. Из котла продукты сгорания выходят уже охлажденными, так как тепло, выделившееся при сгорании топлива, в своей большей части передается воде и пару.

Питательная вода (конденсат) поступает в подогреватель, а затем в барабан котла. Барабан котла снабжен необогреваемыми, расположенными вне пределов топки опускными трубами и подъемными, обогреваемыми трубами. В результате естественной циркуляции, происходящей, как сказано выше, вследствие разности удельных весов воды п насыщенного пара, в барабан непрерывно поступает насыщенный пар. Из барабана насыщенный пар поступает в пароперегреватель, в котором благодаря дальнейшему подводу тепла нагревается и превращается в перегретый пар. Перегретый пар из пароперегревателя подается к тепловому двигателю (паровой турбине). Воздух, необходимый для горения топлива, предварительно нагревается ввоздухоподогревателе.

Обогреваемые подъемные трубы, в которых происходит собственно процесс парообразования, как это видно из рисунка ниже, расположены вдоль стенок топочной камеры. Они обогреваются в основном за счет излучения и называются экранными поверхностями нагрева. В современных котельных агрегатах высокой производительности основная часть кипятильных труб, т. е. труб, в которых из воды образуется пар, устанавливается по стенкам топки, образуя большую экранную поверхность. Именно такой тип котельной установки, именуемый установкой экранного типа, представлен на рисунке:

какое давление в парогенераторе с естественной циркуляцией

Широкое распространение котельных установок экранного типа объясняется их значительными преимуществами. Дело в том, что температура внутри топочной камеры современного, мощного котельного агрегата достигает 1500 °С и более. Такая высокая температура действует разрушающе на стенки топочной камеры, несмотря на то, что они всегда выполняются из огнеупорного материала, большей частью из огнеупорного кирпича; кроме того, плавящаяся при таких температурах зола топлива оказывает разъедающее действие на огнеупорный кирпич. Возникает необходимость защиты стен топочной камеры. Наиболее удачным способом защиты является устройство экранных поверхностей, предохраняющих стенки топки от разрушающего воздействия высокой температуры и плавящейся золы топлива.

Подогреватель поступающей в котел воды (или, как его называют, экономайзер) и пароперегреватель в отличие от испарительных (экранных) труб работают по прямоточному принципу. Это отличие заключается в том, что для превращения в пар всей заполняющей испарительные трубы воды эта последняя должна несколько раз протечь через испарительные трубы, т. е. мы сталкиваемся здесь с так называемой многократной циркуляцией, в то время как через водяной подогреватель или пароперегреватель вода или пар проходят 1 раз.

Как уже было сказано выше, из котлов с принудительной циркуляцией большое применение нашли прямоточные котлы.

Принцип устройства прямоточного котла весьма прост. В принципе, прямоточный котел представляет собой обогреваемый змеевик, в один конец которого подается вода, а из другого конца непрерывно поступает перегретый пар. Схема прямоточного котла представлена на рисунке ниже. Она настолько проста, что не требует специальных пояснений.

какое давление в парогенераторе с естественной циркуляцией

В этом случае вода или пар протекают через трубы котельной установки благодаря напору, создаваемому насосом. Естественная циркуляция здесь вообще отсутствует, в силу чего прямоточные котлы именуются также котлами с принудительной циркуляцией.

Основное отличие между современными крупными котельными установками с естественной циркуляцией и с принудительной циркуляцией (в частности, прямоточными) сводится к устройству испарительной поверхности (экранной поверхности) и к отсутствию барабана у прямоточного котла.

По трубам экранной поверхности прямоточного котла вода и пар движутся за счет работы насоса. В котле же с естественной циркуляцией движение воды и пара по трубам экранной поверхности происходит вследствие разности удельных весов воды и пара. Что касается прочих элементов котельной установки (водяного подогревателя, пароперегревателя, воздушного подогревателя, топки), то они по существу одинаковы у обоих типов котлов.

К недостаткам прямоточных котлов по сравнению с барабанными котлами следует отнести особо высокие требования к качеству питательной воды, предъявляемые эксплуатацией прямоточных котлов. Кратко поясним сказанное. Для того чтобы любой котельный агрегат работал надежно и длительно, без аварий, нельзя допускать отложения сколько-нибудь значительного количества солей (накипи) на внутренней поверхности обогреваемых труб. Когда труба, например, экранной поверхности свободна от накипи, тогда, несмотря на высокую температуру в топке, температура стенки трубы не делается слишком высокой, так как труба энергично охлаждается протекающим внутри ее потоком воды или пара. Если же внутри трубы образуется значительный слой накипи, отличающейся плохой проводимостью тепла, охлаждение стенки трубы водой или паром делается в несколько раз меньшим, температура стенки резко повышается и она может через сравнительно короткое время перегореть, что приведет к необходимости остановки и охлаждения котла для ремонта (после ремонта делают также в некоторых случаях делают щелочение и кислотную промывку котла).

Что представляет собой накипь, образующаяся в котельных трубах и как она возникает? Накипь представляет собой отложение солей на внутренней поверхности труб и возникает она вследствие того, что питательная вода, подаваемая в котельную установку, в том или ином количестве, обязательно содержит в себе в растворенном виде различные соли. Образующийся вследствие испарения воды пар обычно уносит с собой сравнительно небольшое количество солей, большая же часть солей остается в еще не испарившейся воде. Таким образом, содержание солей, отнесенных на 1 литр воды (солесодержание воды, измеряемое обычно количеством миллиграммов солей, растворенных в 1 литре воды), по мере испарения воды и образования пара, непрерывно увеличивается. Чем меньше остается не испарившейся еще воды, тем больше содержание в ней солей. При испарении оставшейся воды высокого солесодержания большая часть солей переходит из растворенного состояния в твердое и отлагается на внутренней поверхности труб. Из сказанного следует, что отложение солей должно происходить главным образом в испарительных трубках в конце процесса парообразования. Очевидно, что для уменьшения возможного отложения накипи следует снижать количество солей, растворенных в питательной воде.

В прямоточном котле, работающем по схеме, представленной на рисунке выше, почти все соли, вносимые с питательной водой (за исключением солей, уносимых паром), должны отложиться па поверхностях нагрева испарительной зоны. Для того чтобы отложение солей происходило не слишком быстро, прямоточные котлы питают только конденсатом с весьма малым солесодержанием. Кроме того, для увеличения надежности и срока безостановочной работы котла прибегают к специальным мероприятиям. К числу таких мероприятий принадлежат, в частности, периодические промывки котла слабым раствором кислоты.

17. Паровые котлы специальных типов и с непрямым испарением воды

Механизация и автоматизация трудоемких процессов базируются на широкомприменении электрической и тепловой энергии. Потребности в тепловой энергии все в большей степени удовлетворяются за счет источников централизованного теплоснабжения от тепловых электрических станций. Вместе с тем суммарная тепловая мощность паровых и водогрейных котлов, эксплуатируемых на промышленных и сельскохозяйственных предприятиях, превосходит тепловую мощность котлов на тепловых электростанциях. В сельском хозяйстве расширение применения тепловой энергии осуществляется строительством котельных, оборудованных паровыми и водогрейными котлами общего назначения, а также котлами специальной конструкции, например пароводогрейными котлами для теплиц.
Для пылеугольных котлов подвесной конструкции, где мельницы близко расположены к котлу (при схеме с прямым вдуванием), короба подвода аэросмеси короткие, что делает практически непригодной жесткую схему соединения горелок с экранами топки. В этом случае применяется второе принципиальное решение — между горелками и экранами топки устанавливаются специальные уплотнения. При этом горелки устанавливаются на неподвижном каркасе, а уплотнение допускает перемещение экранов топки относительно неподвижных горелок. [c.108]
Следовательно, наиболее приемлемым в настоящее время путем антикоррозионной защиты следует считать деаэрацию (дегазацию) всей циркулирующей воды в специальных деаэраторах, как зто практикуется в энергетических, промышленных и крупных отопительных котельных, либо устройство встроенных дегазаторов-в самом котле. Именно по этому пути пошла АКХ им. Памфилова. Предлагаемое АКХ решение подробно описано Ю. П. Сосниным [92]. Смысл его заключается в нагреве в контактно-поверхностном котле воды, циркулирующей в системе теплоснабжения, до температуры не ниже 100° С независимо от наружной температуры. Для этого Ю. П. Сосниным предложена специальная конструкция топки, обеспечивающая возможность кипения воды в объеме, примыкающем к зеркалу испарения. Наличие разрежения в топочном объеме способствует выделению из воды агрессивных газов. Проведенные Ю. П. Сосниным исследования показали возможность практически полного удаления кислорода из воды при использовании предложенной им конструкции топки.
Чем выше жесткость питательной воды, тем больше в котле выделяется шлама и тем выше должен быть размер продувки котла. Котлы различных конструкций имеют неодинаковую способность к концентрированию шлама в нижних точкахциркуляционного контура. Более благоприятны условия для выделения и концентрирования шлама в котлах с нижними барабанами и специальными шламонакопителями (грязевиками).
Каждый вид и марка топлива обладают теми или иными свойствами и характеристиками, влияющими на экономичность процесса горения разное топливо требует создания в топке различных условий, благоприятствующих его сжиганию с минимальными потерями. Довольно часто причиной неэкономичного сжигания, а также недостаточнойпроизводительности котла является несоответствие типа и конструкции топкиособенностям используемого топлива. Для каждого вида топлива следует применять топку специальной конструкции, учитывающей все его характерные свойства.
Стремление получить возможность питания. котлов сравнительно жесткой водой при сохранении надежности работы привело к созданию специальных конструкций котлов с непрямым испарением воды, происходящим в вынесенной из сферы действия горячих газов зоны кипения. Эти котлы широкого распространения не получили.
Современная пароводяная арматура высокого и сверхкритиче-ского давления после ее многократного открытия и закрытия становится неплотной и нуждается в ремонте. При почти ежедневных растопках и остановках маневренного котла ремонт этой арматуры должен производиться гораздо чаще, чем у других котельных агрегатов, и может стать обременительным для электростанций. В таких условиях целесообразна пароводяная арматура специальной конструкции, а ее количество должно быть по возможности уменьшено.
Учитывая наличие больших выбросов твердых частиц во время обдувки поверхностей нагрева котлов, работающих на зольных и сернистых мазутах с различными присадками, необходимо разработать специальные конструкции механических золоуловителей с автоматическим периодическим включением в работу. Основное внимание должно быть направлено на уменьшение габаритов, сопротивления и стоимости золоуловителей, обеспечивающих высокую степень очистки отходящих дымовых газов
Выбор параметров пара. Давление и температуру пара перед машиной следует выбирать в соответствии с ГОСТ 3619-47 На паровые котлы. Большинство отечественных заводов строит паровые машины иа давление 12—16 ата. Пар высокого давления применяется для паровых машин лишь в отдельных случаях (для специальных конструкций).Начальная температура пара обычно не превышает 350—400° С.

Уголь (Q = 22,3 МДж/кг) дробится до размера менее 19 мм. Содержание серы в угле 0,5%, в качестве сорбента используется известняк, отношение Са/8 = 2-ь1. Система подачи топлива, имеющая 100%-ный резерв по всем узлам, состоит из псевдожидкого затвора (герметичного колена), не позволяющего протекать газу из топки в систему подачи топлива, и гравитационных желобов, расположенных на фронте котла. На каждом котле имеется четыре точки ввода топлива. Две растопочные горелки специальной конструкции расположены на боковых стенах топки над плотным слоем. [c.247]

При подвальцовке концов кипятильных труб, расположенных против люков, можно пользоваться обыкновенной вальцовкой. Подвальцовку концов кипятильных труб, приходящихся против глухой стенки котла, следует производить вальцовкой с удлиненным веретеном специальной конструкции в этом случае подвальцовку производят со стороны открытых концов труб (рис. 80). [c.117]

В ходе описываемых исследований специальных мер по выравнению подачи воздуха и газа между горелками, как правило, не принималось. Степень выравнивания определялась идентичностью форм и размеров воздушных регистров и газовых насадок. По предварительным оценкам подобная естественная неравномерность вызывала отклонения коэффициента избытка воздуха в единичной горелке не более чем на ( 10% от среднего. Под средним в данном случае понимается избыток организованно подаваемого воздуха, который, как правило, меньше единицы (см. табл. 3-2). Поскольку точные измерения требуют реконструкции воздуховодов котлов и ограниченыпогрешностями приборов, влияние неравномерности было проверено путем создания искусственных перекосов. Опыты проводились на котлах различных конструкций. [c.117]

Пропускная способность распространенных конструкций водоотводчиков невелика при выбросах воды из котлов они обычно не успевают удалять из водоотделителя воду наличие водоотделителя не гарантирует турбину от гидравлических ударов. Водоотделители дороги осо бенно при высоком давлении. Поэтому на установкахвысокого давления избегают их применять. Иногда пар из котлов подводят к турбинам через сбо рные коллекторы, дренируемые через горшки специальной конструкции, способные быстро отводить большое количество воды, выбрасываемой котлами в паро- [c.266]

Расположение тягодутьевых установок на специальной конструкции в здании котельной(фиг. 201). Дымососы и дутьевые вентиляторы расположены над воздухоподогревателями на специальной площадке, опирающейся на железобетонные колонны, установленные ме-кду котлами, и на колонны внутренней стены котельной. Между котельной и машинным залом находится пятиэтажное промежуточное помещение, в котором располагаются на первом этаже — магистральные трубопроводы, на втором — питательные насосы, на третьем — деаэраторы и питательные баки, на четвертом— электрическое распределительное устройство и на пятом вспомогательные баки. [c.326]

Для использования тепла уходящих газов за промышленными печами представляется возможным устанавливать, помимо котлов-утилизаторов специальных конструкций, также различного вида дымогарные котлы или обычные горизонтальные ивертикальные водотрубные котлы с естественной циркуляцией воды без экранов. Выбор производительности и типа теплоутилизацио нной установки зависит от мощности и технологических особенностей печи, а также от размеров и характера теплопотребления предприятия. Следует отметить в связи с этим, что [c.95]

Ряд проведенных для этого мероприятий потребовал изменения обычной компоновки перегревателя и дополнительных конструктивных решений по котлу. Именно решение этих вопросов вызвало поя вление котлов с не-сим метричньш1и корпусами, разделенными конвективными газоходами, специальными конструкциями топок, горелок и др. [c.15]

За немногие последующие годы завод полностью пересмотрел номенклатуру своей продукции. Было разработано большое число новых типоразмеров паровых котлов высокого давления на 100 и 140 ат с температурой перегретого пара 540 и 570° С. Широкое применение нашли новые коиструктивные элё- менты двухсветные экраны, двукратный перегрев пара, ширмовые и настенные радиационные части пароперегревателя, регенеративные вращающиеся воздухоподогреватели и т. п. Появились новые специальные конструкции котлов, в частности предназначенные длясжигания мазута и природного газа. [c.3]

Ранее начальные параметры пара для приводных турбин ТК были такими же, как на подавляюп1,ем большинстве районных электростанций (КЭС) Минэнерго (примерно 3,5 МПа, 435° С). В этих условиях электропривод с n= onst мог конкурировать с паровым только при очень небольших мощностях компрессоров, При применяемых в то время на всех паровоздуходувных станциях (ПВС) поперечных связях котлов по пару паротурбинные приводы зарекомендовали себя достаточно надежными агрегатами. Низкие по теперешним масштабам начальные параметры пара и специальные конструкции турбин позволяли запускать резервные агрегаты из холодного состояния в пределах часа, что важно для потребителей, [c.227]

Клеи-расплавы периодическим способом получают в реакторах с Z-образными лопастями и разгрузочным шнеком, в плавильных котлах, в системах, состоящих из плавильного резервуара, насоса и конечного смесителя для смешения расплавов, а также валковым способом при изготовлении клеев без специального подогрева на двух- или трехвалковых установках. При непрерывной схеме используются двухшнековые экструдеры с одновременной пропорциональной дозировкой твердых и жидких компонентов, их плавлением, гомогенизацией и последующей выгрузкой и формованием. В одношнековых экструдерах применяется специальная конструкция шнека. [c.526]

В целях обеспечения равномерного ввода пароводяной смеси в барабан и отвода пара из него современные котлы оборудуются специальными устройствми. Наиболее распространенными из них в котлах отечественных конструкций являются дырчатые листы или щиты, установка которых в нижней части барабана (фиг, 228) имеет своей целью увеличение сопротивления движению пароводяной смеси, а следовательно, обеспечение равномерной нагрузки зеркала испарения, использование всей площади его и выхода пара с зеркала испарения с минимальными скоростями. Это обстоятельство является очень важным, так как при этом пар не может 24 371 [c.371]

Каркас котла — металлическая конструкция, предназначенная для поддержания барабана, трубной поверхности нагрева, коллекторов, а также обмуровки лестниц, с площадками и других элементов оборудования котла. В современных котельных агрегатах каркасы, выполняемые в виде рамной конструкции, состоят из основных колонн и балок, несущих главную нагрузку, и вспомогательных балок, служащих для обвязки и придания жесткости каркасу, а также для крепления обмуровки, гарнитуры и других деталей котла. Основные колонны и балки обычно выполняются составными из двутавров или швеллеров требуемого сечения. Детали каркаса, соединяемые с помощью сварки или на болтах, устанавливают на специальный фундамент, который выполняется, как правило, из железобетона и является самостоятельным, не связанным с фундаменгом здания котельной. [c.135]

18. Паровые котлы с наддувом

какое давление в парогенераторе с естественной циркуляцией

Конструкция барабанов котла аналогична конструкции барабанов котла ДКВР-10. Пароперегреватель расположен в боковом газоходе котла и состоит нз двух ступеней. Для защиты труб змеевиков второй ступени от перегрева имеется поверхностный пароохладитель, установленный в нижнем барабане.

Хвостовые поверхности нагрева котла устанавливаются перед фронтом котла. Теплонапряжение топочного объема котла составляет 500—850 ккал/м 3 ч при температуре уходящих газов от 150 до 200°С в зависимости от вида топлива и типа хвостовых поверхностей нагрева. КПД котла 90—91%. Котел ГМ-10 несущего каркаса не имеет. Стальиан обшивка приваривается к обвязочному каркасу. Натрубная обмуровка выполняется облегченной из савелита и асбестита. Пол топочной камеры выкладывается внутри из шамотного кирпича. В задней стене топочной камеры устанавливается взрывной клапан.

Установка котла при транспортировке и иа фундамент в котельной производится посредством опорной рамы, приваренной к нижнему барабану и соединенной с левой стеной котла.

Котел ГМ-10 снабжается устройствами для автоматического регулирования основных параметров и защитой котла и вспомогательного оборудования при аварийных режимах.

какое давление в парогенераторе с естественной циркуляцией

Поставка котла производится в полностью смонтированном виде на опорной раме с обмуровкой и обшивкой.

19. Парогенераторы атомных электростанций

Парогенератор на АЭС[править | править вики-текст]

какое давление в парогенераторе с естественной циркуляцией

Схема теплопередачи водоводяного реактора. Красным показан первый контур; сине-голубым второй контур с турбиной. Эти контуры обмениваются теплом в парогенераторе. Справа показан конденсатор пара и охлаждающий его поток воды из пруда-охладителя.

Горизонтальный парогенератор слева и вертикальный справа.
1 — коллектор питательной воды (вход 2-го контура)
2 — теплообменные трубки (внутри 1-й контур)
3 — вертикальные коллектора (горизонтальный ПГ) и горизонтальная трубная доска (вертикальный ПГ), вход и выход теплоносителя 1-го контура
4 — наиболее вероятные места скопления шлама

На большинстве атомных электростанций используется типовая схема преобразования атомной энергии в электричество: ядерные реакции греют теплоноситель (чаще всего воду). Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре

330 °C [7] ). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Типовой парогенератор состоит из тысяч трубок, по которым прокачивается теплоноситель первого контура. Трубки погружены в теплоноситель второго контура. Понятно, что за время длительной (десятки лет) службы станции в трубках могут развиться дефекты. Это может привести к утечке теплоносителя первого контура во второй. Поэтому при плановых остановках реактора состояние теплообменных трубок контролируют и перекрывают (глушат) дефектные. В редких случаях приходится менять парогенератор целиком, но обычно срок службы парогенератора равен сроку службы реактора.

Классификация и принцип действия[править | править вики-текст]

Парогенератор представляет собой рекуперативный теплообменный аппарат, в котором тепловая энергия передаётся от теплоносителяпервого контура к рабочему телу второго контура через поверхность теплообмена и таким образом генерируется пар, питающий турбину. При трёхконтурной схеме (реактор на быстрых нейтронах) имеются также промежуточные теплообменники. Тепло через них передаётся от первого контура во второй (оба жидкометаллические), а в парогенераторах происходит передача тепла от второго контура в трети

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *