какое давление в черной дыре

10 фактов о черных дырах, которые должен знать каждый

Черные дыры — это, пожалуй, самые загадочные объекты Вселенной. Если, конечно, где-то в глубинах не скрываются вещи, о существовании которых мы не знаем и знать не можем, что вряд ли. Черные дыры — это колоссальная масса и плотность, сжатая в одну точку небольшого радиуса. Физические свойства этих объектов настолько странные, что заставляют ломать голову самых искушенных физиков и астрофизиков. Сабина Хоссфендер, физик-теоретик, сделала подборку десяти фактов о черных дырах, которые должен знать каждый.

Возможно так и выглядит черная дыра

Что такое черная дыра?

какое давление в черной дыре

Схматичное изображение устройства черной дыры

Определяющим свойством черной дыры является ее горизонт. Это граница, преодолев которую ничто, даже свет, не сможет вернуться обратно. Если отделенная область становится отделенной навсегда, мы говорим о «горизонте событий». Если же она только временно отделена, мы говорим о «видимом горизонте». Но это «временно» также может означать, что область будет отделенной гораздо дольше нынешнего возраста Вселенной. Если горизонт черной дыры является временным, но долгоживущим, разница между первым и вторым расплывается.

Насколько большие черные дыры?

какое давление в черной дыре

Выглядит впечатляюще, согласны?

Можно представить горизонт черной дыры как сферу, и ее диаметр будет прямо пропорциональным массе черной дыры. Поэтому чем больше массы падает в черную дыру, тем больше становится черная дыра. По сравнению со звездными объектами, впрочем, черные дыры крошечные, потому что масса сжимается в очень малые объемы под действием непреодолимого гравитационного давления. Радиус черной дыры массой с планету Земля, например, всего несколько миллиметров. Это в 10 000 000 000 раз меньше настоящего радиуса Земли.

Радиус черной дыры называется радиусом Шварцшильда в честь Карла Шварцшильда, который впервые вывел черные дыры как решение для общей теории относительности Эйнштейна.

Что происходит на горизонте?

какое давление в черной дыре

Так называемый эффект «спагетти»

Когда вы пересекаете горизонт, вокруг вас ничего особенного не происходит. Все из-за принципа эквивалентности Эйнштейна, из которого следует, что нельзя найти разницу между ускорением в плоском пространстве и гравитационным полем, создающим кривизну пространства. Тем не менее наблюдатель вдали от черной дыры, который наблюдает за тем, как кто-то другой падает в нее, заметит, что человек будет двигаться все медленнее и медленнее, подходя к горизонту. Будто бы время вблизи горизонта событий движется медленнее, чем вдали от горизонта. Однако пройдет некоторое время, и падающий в дыру наблюдатель пересечет горизонт событий и окажется внутри радиуса Шварцшильда.

То, что вы испытываете на горизонте, зависит от приливных сил гравитационного поля. Приливные силы на горизонте обратно пропорциональны квадрату массы черной дыры. Это означает, что чем больше и массивнее черная дыра, тем меньше силы. И если только черная дыра будет достаточно массивна, вы сможете преодолеть горизонт еще до того, как заметите, что что-то происходит. Эффект этих приливных сил растянет вас: технический термин, который для этого используют физики, называется «спагеттификация».

В первые дни общей теории относительности считалось, что на горизонте существует сингулярность, но это оказалось не так.

Что внутри черной дыры?

Никто не знает наверняка, но точно не книжная полка. Общая теория относительности прогнозирует, что в черной дыре сингулярность, место, в котором приливные силы становятся бесконечно большими, и как только вы преодолеваете горизонт событий, вы уже не можете попасть куда-либо еще, кроме как в сингулярность. Соответственно, ОТО лучше не использовать в этих местах — она попросту не работает. Чтобы сказать, что происходит внутри черной дыры, нам нужна теория квантовой гравитации. Общепризнанно, что эта теория заменит сингулярность чем-то другим.

Как образуются черные дыры?

А вы когда-нибудь задумывались, что произойдет, если рядом с Землей появится Черная Дыра?

Следующим распространенным типом черных дыр являются «сверхмассивные черные дыры», которые можно найти в центрах многих галактик и которые имеют массы примерно в миллиард раз больше, чем черные дыры солнечной массы. Пока доподлинно неизвестно, как именно они формируются. Считается, что когда-то они начинались как черные дыры солнечной массы, которые в густонаселенных галактических центрах поглощали множество других звезд и росли. Тем не менее они, похоже, поглощают вещество быстрее, чем предполагает эта простая идея, и как именно они это делают — все еще остается предметом исследований.

Более спорной идеей стали первичные черные дыры, которые могли быть сформированы практически любой массой в крупных флуктуациях плотности в ранней Вселенной. Хотя это возможно, достаточно трудно найти модель, которая производит их, при этом не создавая чрезмерное их количество.

На нашем канале Яндекс.Дзен выходят эксклюзивные материалы, которых нет на сайте

Наконец, есть очень умозрительная идея о том, что на Большом адронном коллайдере могут образовываться крошечные черные дыры с массами, близкими массе бозона Хиггса. Это работает только в том случае, если у нашей Вселенной имеются дополнительные измерения. Пока не было никаких подтверждений в пользу этой теории.

Откуда мы знаем, что черные дыры существуют?

какое давление в черной дыре

Черные дыры до сих пор не изучены, и вряд ли будут изучены ближайшие десятки лет

У нас есть много наблюдательных доказательств существования компактных объектов с крупными массами, которые не излучают свет. Эти объекты выдают себя по гравитационному притяжению, например, за счет движения других звезд или газовых облаков вокруг них. Они также создают гравитационное линзирование. Мы знаем, что у этих объектов нет твердой поверхности. Это вытекает из наблюдений, потому что вещество, падая на объект с поверхностью, должно вызывать выброс большего числа частиц, чем вещество, падающее сквозь горизонт.

Почему в прошлом году Хокинг сказал, что черные дыры не существуют?

какое давление в черной дыре

Так существуют ли черные дыры на самом деле?

Он имел в виду, что черные дыры не имеют вечного горизонта событий, а только временный кажущийся горизонт (см. пункт первый). В строгом смысле только горизонт событий считается черной дырой.

Как черные дыры испускают излучение?

какое давление в черной дыре

Черные дыры испускают излучение, каким бы безумным это не казалось

Черные дыры испускают излучение за счет квантовых эффектов. Важно отметить, что это квантовые эффекты вещества, а не квантовые эффекты гравитации. Динамическое пространство-время коллапсирующей черной дыры меняет само определение частицы. Подобно течению времени, которое искажается рядом с черной дырой, понятие частиц слишком зависимо от наблюдателя. В частности, когда наблюдатель, падающий в черную дыру, думает, что падает в вакуум, наблюдатель далеко от черной дыры думает, что это не вакуум, а полное частиц пространство. Именно растяжение пространства-времени вызывает этот эффект.

Здесь можно почитать о самой большой Черной Дыре, которую удалось обнаружить на данный момент

Впервые обнаруженное Стивеном Хокингом, испускаемое черной дырой излучение называется «излучением Хокинга». Это излучение имеет температуру, обратно пропорциональную массе черной дыры: чем меньше черная дыра, тем выше температура. У звездных и сверхмассивных черных дыр, которые мы знаем, температура значительно ниже температуры микроволнового фона и поэтому не наблюдается.

Что такое информационный парадокс?

Парадокс потери информации обусловлен излучением Хокинга. Это излучение сугубо термическое, то есть случайно и из определенных свойств имеет только температуру. Излучение само по себе не содержит никакой информации о том, как сформировалась черная дыра. Но когда черная дыра испускает излучение, она теряет массу и сокращается. Все это совершенно не зависит от вещества, которое стало частью черной дыры или из которого она образовалась. Выходит, зная только конечное состояние испарения нельзя сказать, из чего сформировалась черная дыра. Этот процесс «необратим» — и загвоздка в том, что в квантовой механике нет такого процесса.

Выходит, испарение черной дыры несовместимо с квантовой теории, известной нам, и с этим нужно что-то делать. Каким-то образом устранить несогласованность. Большинство физиков считают, что решение состоит в том, что излучение Хокинга должно каким-то образом содержать информацию.

Что предлагает Хокинг для решения информационного парадокса черной дыры?

Идея состоит в том, что у черных дыр должен быть способ хранить информацию, который до сих пор не приняли. Информация хранится на горизонте черной дыры и может вызывать крошечные смещения частиц в излучении Хокинга. В этих крошечных смещения может быть информация о попавшей внутрь материи. Точные детали этого процесса в настоящее время не определены. Ученые ждут более подробного технического документа от Стивена Хокинга, Малькома Перри и Эндрю Строминджера. Говорят, он появится в конце сентября.

На данный момент мы уверены, что черные дыры существуют, знаем, где они находятся, как образуются и чем станут в итоге. Но детали того, куда девается поступающая в них информация, до сих пор представляют одну из самых больших загадок Вселенной.

Давайте обсудим Черные Дыры в нашем Telegram-канале?

Источник

Какое давление в черной дыре

Проект Краткая Энциклопедия «Физика» (Вопросы и ответы)

Проект Краткая Энциклопедия «Физика» (Вопросы и ответы): Проект Краткая Энциклопедия Физика (Вопросы и ответы)

Материалы об О.Э. Мандельштаме в американских архивах

Иннокентий Серышев востоковед и эсперантист

Русская архитектура и градостроительство в Северо-Восточной Азии в ХХ в.:векторы взаимовлияний

5. Звезды и Вселенная

5.1 Давление в черной дыре

Вопрос: Какое давление в черной дыре?

В определенном смысле (с точки зрения наблюдателя покоящегося относительно черной дыры) это так и есть. Однако, оказывается, что для наблюдателя, свободно падающего на черную дыру (так называемая локально-инерциальная система) ничего особенного на гравитационном радиусе не происходит. А ведь только такой наблюдатель и может провести измерения вблизи гравитационного радиуса. Правда, тайну своих открытий он навеки унесет с собой, так как из под горизонта событий невозможно послать сигнал оставшимся снаружи покоящимся наблюдателям и тем более вернуться назад!

Здесь следует заметить, что то, что мы обычно называем полем тяготения (поле сил тяжести Ньютоновского уравнения тяготения ), локально устраняется в системе свободно падающего наблюдателя. И в действительности поле тяготения характеризуется полем так называемых приливных сил. Представьте, что Вы свободно падаете на точечную массу равную, скажем массе Земли и при этом (для определенности) ориентированы ногами вниз. Пока Вы находитесь далеко от массы (скажем на расстоянии 6000км) вы наслаждаетесь состоянием невесомости, хотя сила притяжения на этом расстоянии как раз такая, как на поверхности Земли. Однако, падая все ближе к центру, вы почувствуете беспокойство. Вы начинаете ощущать, что появилась сила, стремящаяся вытянуть вас в длину и в то же время сжать в поперечном направлении.

Появление такой силы понять не сложно: ускорение вашего падения определяется положением центра тяжести вашего тела. Однако Ваши ноги немного ближе к тяготеющей массе и притягиваются чуть сильнее. а голова, соответственно, чуть слабее. В вашей свободно падающей системе координат это приводит к тому, что появляются силы, стремящиеся вытянуть тело вдоль радиуса и сжать его вдоль ортогональных радиусу направлений. Расчет этих сил прост и для Ньютоновской теории не выходит за рамки школьного курса. Поэтому предлагаю этот расчет в качестве самостоятельного упражнения и не привожу здесь.

Вернемся к нашему падающему наблюдателю. Его беспокойство было не напрасным! Он будет разорван приливными силами еще до того, как встретится с нашей «точечной Землей». В этом смысле можно сказать, что всякому гравитационному полю соответствует анизотропное поле давления или натяжения приливных сил и именно это натяжение и является истинной мерой гравитационного поля.

Гравитационные волны, для поиска которых сегодня построено несколько весьма чувствительных гравитационных антенн являются как раз волнами приливных сил. Все эти антенны основаны на том, что приливные силы гравитационной волны периодически пытаются сдвинуть или развести две массы, подвешенные свободно или связанные упругой связью.

Оказывается, что с точки зрения свободно падающего на черную дыру наблюдателя поле приливных сил не содержит никаких особенностей на гравитационном радиусе. Оно вполне конечно и регулярно в том смысле, что гладко меняется от точки к точке. Для черной дыры с массой порядка солнечной приливные силы на горизонте событий достаточно велики, а для черной дыры с массой галактики вполне малы по человеческим меркам. Однако в центре черной дыры имеется истинная особенность, где приливные силы обращаются в бесконечность.

Теперь поговорим о давлении, характерном именно для черной дыры. В 1948 году Казимир показал, что при наличии границ вакуум перестраивается, и в нем появляются натяжения, которых нет в вакууме пустого бесконечного пространства. В применении к вакууму теории электромагнетизма (электродинамики) это означает, что в пространстве между плоскими параллельными НЕ ЗАРЯЖЕННЫМИ проводящими пластинами (плоский не заряженный конденсатор) возникает притяжение.

Тем не менее, в 1958 году (через 10 лет после предсказания Казимира) Спарнай из лаборатории фирмы Сандия экспериментально подтвердил существование сил Казимира. Оказалось, что силы Казимира существенно зависят от геометрии границы и, например, для границы в виде проводящей сферы возникает не натяжение, а давление.

5.2 Край Вселенной

Вопрос: Есть ли у вселенной край?

Ответ: Ответ на вопрос зависит от того, что называть краем Вселенной (это слово принято писать с заглавной буквы).

С другой стороны в настоящее время с помощью внеатмосферного телескопа «Хаббл» и радиоинтерферометра со сверхдлинной базой (приемники излучения разнесены на расстояние 8000 км) астрономы имеют возможность наблюдать объекты, удаленные от нас на 15 миллиардов световых лет. Если общепринятая сейчас гипотеза Большого взрыва верна, а по различным оценкам, это событие произошло 10-20 миллиардов лет назад (многие астрономы считают, что это случилось 17 миллиардов лет назад), то из приведенных цифр видно, как близко к началу Вселенной подошли астрономы-наблюдатели.

Если за край Вселенной принимать расстояние, с которого мы в принципе можем получить информацию, то безусловно, такой край есть и современные методы наблюдения совсем близко к нему подобрались.

5.3 Что такое квазар

Вопрос: Что такое квазар?

Первый квазар (3С48) был открыт в 1961 году. В результате точного измерения координат компактного радиоисточника, выполненных в 1961 году, источник был отождествлен с уникальным звездоподобным объектом 16 звездной величины, имеющим слабый красный выброс, направленный от источника. Несколько позже были получены спектры этого квазара и выяснилось, что он имеет значительное красное смещение спектральных линий. Это указывало на высокую скорость удаления квазара от нас. Когда было открыто большое число квазаров, выяснилось, что все они имеют значительные красные смещения. Это говорило о том, что природа красного смещения имеет космологический характер и связана с расширением Вселенной, а квазары находятся на космологических расстояниях от нас.

Литература: «Физика космоса», М., Советская энциклопедия, 1986, стр. 295-296.

5.4 Сколько звезд на небе

Ответ: Точного числа, естественно, никто не знает. В каталоги внесены миллионы звезд. Невооруженным глазом в безлунную ясную ночь в северном полушарии видны над горизонтом около 3000 звезд.

5.5 Галактики сталкивались часто

По-видимому, в отдаленные времена столкновения галактик друг с другом были куда более частым явлением, чем ныне. Это укрепляет гипотезу, согласно которой крупные эллиптические галактики образуются при столкновениях спиральных.

Литература: «New Scientist» 1999. V.161. N2169. P.23 (Великобритания).

Источник

Подтвердилась теория Хокинга об аномальных свойствах черных дыр

какое давление в черной дыре

Физики из Университета Сассекса впервые доказали, что черные дыры способны оказывать давление на окружающую среду. Этом необычное свойство черных дыр предположил известный физик-теоретик Стивен Хокинг в 1974 году, но до сих пор оставалось лишь теорией.

какое давление в черной дыре

какое давление в черной дыре

Исследование опубликовано в журнале Physical Review D, а коротко о нем рассказывает Phys.org. Сообщается, что открытие было сделано профессором Ксавье Кальме и Фолкертом Кейперсом, причем совершили они его отчасти случайно.

Физики проводили исследование, не связанное напрямую с последовавшим открытием. Они занимались расчетами, связанными с природой так называемых черных дыр Шварцшильда. В астрономии принято считать, что это простейшая черная дыра, в которой сердечник не вращается. Этот тип черной дыры имеет только сингулярность и горизонт событий.

Однако новое исследование показало, что на самом деле эти загадочные объекты представляют собой гораздо более сложные термодинамические системы, чем считалось до сих пор, причем они обладают не только температурой, но и давлением.

Эксперт напомнил, что еще в 1974 году Стивен Хокинг предсказал то, что было обнаружено сейчас. Тогда знаменитый физик сформулировал теорию о том, что черные дыры испускают тепловое излучение. До этого считалось, что они инертны, что это последняя стадия жизни умирающей тяжелой звезды.

какое давление в черной дыре

какое давление в черной дыре

Новое исследование пока не дало ответа на вопрос, что именно вызывает давление. Согласно расчетам ученых, оно к тому же является не просто маленьким, а обладает отрицательным значением. Это означает, что при подобных условиях черная дыра будет сокращаться, а не расти, что согласуется с предсказанием Хокинга.

Теперь ученые намерены определить, как именно отрицательное давление связано с излучением Хокинга. Открытие может иметь интересные последствия и для попыток увязать общую теорию относительности, работающую на макроуровне, с квантовой механикой, которая работает в чрезвычайно малых масштабах.

Считается, что черные дыры играют ключевую роль в этом понимании. Согласно общей теории относительности, информация, которая исчезает за пределами черной дыры, может исчезнуть навсегда. Но законы квантовой механики говорят, что такого просто не может быть. Этот парадокс назван информационным, и эта одна из главных загадок черных дыр. Возможно, новое открытие поможет его разрешить.

Источник

Как работает чёрная дыра

Чёрными дырами принято считать области пространства, в которых гравитация настолько сильна, что ни излучение, ни вещество не в состоянии эту область покинуть, — так как для тел, находящихся в поле притяжения этих космических объектов, собственная скорость убегания должна превышать скорость света, что, в принципе, невозможно. Границу области, из-за которой не может прорваться даже свет, называют «горизонтом событий» черной дыры.

Американский физик Джон Арчибальд Уиллер только в 1967 году предложил этому космическому объекту, всё поглощающему и ничего не выпускающему, название «чёрная дыра». Ранее использовались такие обозначения, как «коллапсар» или «застывшая звезда».

какое давление в черной дыре

Поиском чёрных дыр учёные занимаются уже много десятилетий, но поскольку найти «чёрную кошку в тёмной комнате» не так-то просто, приходится ориентироваться на обычные звёзды и другие космические объекты, взаимодействующие с чёрными дырами, — и по их поведению измерять параметры и отслеживать влияние дыр на окружающее космическое пространство.

Изучать же эти объекты в лабораторных условиях невозможно, потому как для создания чёрной дыры тело с массой в миллионы тонн необходимо сжать до размеров атома. Теоретическое изучение, основанное на общей теории относительности Альберта Эйнштейна, находит многочисленные подтверждения в цифрах и снимках орбитальных телескопов.

какое давление в черной дыре

какое давление в черной дыре

В результате её ядро и мантия переживают противоположные процессы: ядро начинает сжиматься, при этом выделяя большое количество тепла, которое нагревает внешнюю оболочку. Звезда теряет свои внешние слои, непомерно расширяющиеся в огненную туманность, разрушающую собственную планетарную систему. Если же речь идёт о сверхновой – то оболочка обычно уничтожается взрывом.

Итак, ядро массивной звезды сжимается и уходит под «горизонт событий», — и если бы мы могли наблюдать за этими метаморфозами в телескоп, то сначала увидели бы, что звезда с увеличивающейся скоростью уменьшается, а свет слабеет и краснеет, что объяснимо потерей фотонами энергии по мере приближения к поверхности гравитационного радиуса, необходимостью преодолевать увеличивающуюся силу тяжести, вследствие чего частицам требуется всё большее количество времени, чтобы добраться до Земли (вернее, было необходимо, — ведь процессы, которые мы наблюдаем, происходилицелую вечность тому назад). Далее мы увидели бы, что сжатие замедляется, и в тот момент, когда оно совсем остановится, визуальное наблюдение новой чёрной дыры становится невозможным.

какое давление в черной дыре

Но если бы мы могли себе это позволить, и заглянуть за «горизонт событий», то обнаружили бы следующую картину: за короткий промежуток времени вещество ядра сжимается в точку, называемую «сингулярностью». В ней достигаются бесконечно большие значения тяготения и плотности. Английский физик Стивен Хоукинг назвал сингулярность «местом, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства-времени».

Первоначальная звезда могла быть устроена сколь угодно сложно, однако новообразованная чёрная дыра «забывает» всю информацию об исходной модели: форму, химический состав, распределение плотности вещества и др. После сжатия наблюдатель может определить всего три основных параметра: электрический заряд, полную массу и момент импульса, присутствующий в случае, если звезда ранее вращалась.

какое давление в черной дыре

В последнем случае вокруг черной дыры сохраняется гравитационное поле «вихревого» принципа действия, которое увлекает соседние космические тела во вращательное движение вокруг нее. Это поле получило имя математика Роя Керра, который нашел решение его расчётных уравнений в 1963 году.

Эффект поля Керра усиливается по мере приближения к горизонту чёрной дыры, — то есть возле неё существует определённая зона космического пространства, с одной стороны ограниченная «горизонтом событий» дыры и ведущей к неминуемой гибели всех объектов в недрах сингулярности, а с другой стороны – чертой, за которой эти объекты не притягиваются и остаются неподвижными относительно далёких звёзд. Эта черта называется «пределом статичности».

какое давление в черной дыре

В радиусе действия поля Керра, или так называемой «эргосфере», объекты могут двигаться только по орбите вокруг нового центра тяготения, причём в том же направлении, в котором вращается сама дыра. Попав в эргосферу, кванты света или, если уж на то пошло, летательный аппарат всё ещё могут вырваться наружу, унося при этом энергию вращения сверхсистемы, но стационарным космическим телам остаётся скромный удел: водить космический «хоровод» вокруг гиганта и становиться его добычей.

Следуя эйнштейновской общей теории относительности, вблизи чёрных дыр под действием их гравитационного поля искривляется пространство и время (здесь будет применимо пересечение или разбежность параллельных прямых, замедление часов и все прочие ныне доказанные «легенды» учёного). Для того чтобы представить себе, как ведёт себя время около чёрной дыры, сравним его с земным. Несмотря на то, что наша планета – просто пылинка в сравнении с чёрными дырами, земная гравитация влияет на ход времени на поверхности сильнее, чем на орбите — настолько, что в GPS-навигаторы специально вносят поправки на это различие. Чего же тогда ожидать от объектов с такой чудовищным притяжением и массой, как у чёрных дыр?

какое давление в черной дыре

Здесь напряженность гравитационного поля настолько велика, что любые физические процессы можно описывать лишь при помощи релятивистской (относительной колебаниям нейтрона) теории тяготения. Одним словом, всё это подводит нас к выводу, что чёрная дыра способна искривлять геометрию пространства и времени вокруг себя, и чем ближе – тем сильнее этот эффект, вплоть до того, что лучи света могут двигаться по её окружности.

Но неужели любая звезда рано или поздно начинает разрушать то, что создавалось с таким трудом под её светом и теплом? Повторимся: это не так. По оценкам экспертов, при умеренной начальной массе звезды ядро может сжиматься, превратиться в маленький и очень плотный белый карлик, или в еще более плотную и совсем крохотную нейтронную звезду, которые затем сохранят устойчивость: его сжатие будет остановлено давлением вырожденного вещества, и «битва с гравитацией» будет выиграна.

Поэтому для тех, кто твёрдо намерен прожить ещё пять-семь миллиардов лет, это хорошая новость. Правда, наблюдать за солнечным белым карликом придётся из подземного бункера, так как испаряющаяся мантия перед этим расширится, поглотит Меркурий и Венеру, заодно лишив землю воды и практически полностью – атмосферы. Если же масса звезды превышает три массы Солнца, то уже ничто не в силах остановить ее коллапса, — она уйдёт под горизонт событий и рано или поздно станет новой чёрной дырой.

Согласно расчётам учёных, наша галактика существует двенадцать миллиардов лет, и за это время должно было образоваться несколько десятков миллионов черных дыр, основная масса которых предположительно находится в ядре Млечного Пути, где коллапсировали наиболее массивные древние звёзды.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *