На страницах нашего онлайн портала alivahotel.ru мы расскажем много самого интересного и познавательного, полезного и увлекательного для наших постоянных читателей.
И это всё о нём. Место рентгеновского излучения среди других видов ионизирующих излучений Е. В. Штрыкова (№2, 2013)
Главный специалист-эксперт отдела специализированного надзора за радиационной безопасностью Межрегионального управления № 153 Федерального медико-биологического агентства Е.В. Штрыкова
Радиоактивность – это спонтанный (самопроизвольный) распад ядер со строго определенной вероятностью, сопровождающийся ядерным (ионизирующим) излучением.
Рентгеновское излучение по своей природе относится к волновому (фотонному) излучению, которое в шкале электромагнитных излучений (ЭМИ) следует за ультрафиолетовым излучением и имеет меньшую длину волны.
По способу взаимодействия с облучаемым объектом все ионизирующие излучения можно разделить на три вида: корпускулярное излучение с массой покоя и зарядом (альфа-, бета-, протонное, мезонное и пр.); корпускулярное излучение с массой покоя, но без заряда (нейтронное) и электромагнитное излучение (гамма- и рентгеновское).
Что отличает генерируемые ионизирующие излучения от ионизирующих излучений ядерного происхождения? Эти излучения различны по своему происхождению (поспособу генерирования) со всеми вытекающими из этого последствиями. Характеристики ядерного излучения (такие как: вид излучения, энергия, период полураспада, ионизирующая и проникающая способности и многие другие) зависят исключительно от свойств распадающегося ядра и не могут быть изменены по желанию человека.
То есть, рентгеновское излучение, также как и ядерные излучения, относится к ионизирующему излучению (ИИ). Общим свойством всех ионизирующих излучений является их характер действия на окружающую среду, через которую проходит излучение, а именно, способность излучения при взаимодействии со средой передавать ей свою энергию. Эта энергия достаточно велика, чтобы в процессе взаимодействия со средой ядерного излучения (независимо от его вида) и рентгеновского излучения произвести ионизацию и (или) возбуждение атомов среды. По этой причине все излучения, взаимодействие которых со средой приводит к образованию ионов разных знаков, называются ионизирующими.
Удельная ионизация (линейная плотность ионизации ЛПИ) – число ионных пар на единице длины пробега. Сравним удельную ионизацию альфа-, бета- и рентгеновского излучений. Например, в воздухе на 1 см пробега альфа-частиц с энергией 1 МэВ образуется 40 тысяч пар ионов, для бета-частиц такой же энергии – примерно в 800 раз меньше. Плотность ионизации фотонного излучения примерно на два порядка меньше, чем бета-излучения. К примеру, при поглощении фотона с энергией 100 кэВ в воздухе образуется примерно 3 тыс. пар ионов, при длине пробега порядка 50 м.
Виды ионизирующих излучений
Все свойства ИИ спонтанны
Все свойства ИИ регулируемы
Электромагнитные волны (ЭМВ)
Нет массы покоя и заряда
Нет массы покоя и заряда
К примеру, ускорен-ные электроны
Моноэнергетические (С одинаковой начальной энергией)
Тормозное (непрерывный энергетический спектр)
Характеристи-ческое (диск-ретный спектр энергии)
Нейтронное (масса покоя, нет заряда).
Корпускулярное, но косвенно ионизирующее
Механизмы ионизации облучаемой среды каждым из трех вышеназванных видов ИИ различны. Корпускулярное излучение (к примеру, альфа- и бета-) относится к классу непосредственно ионизирующего излучения, в то время как нейтроны (частицы без заряда) и фотоны сами не производят ионизации, поэтому относятся к косвенно ионизирующему излучению. При их попадании в среду на первом этапе должно появиться непосредственно ионизирующее излучение, которое и производит ионизацию. В среде, пронизываемой фотонами, конечные эффекты (ионизация и возбуждение) происходят не за счет прямого взаимодействия фотонов со средой, а через посредство вторичных электронов и позитронов. Фотон является слабо ионизирующей частицей, испытывающей редкие взаимодействия (но теряющей при каждом взаимодействии значительную часть своей энергии).
Своеобразно, косвенным образом, ионизируют среду нейтроны. Нейтроны различных энергий могут создавать в облучаемой среде разнообразные непосредственно ионизирующие частицы: протоны, альфа-частицы, ядра отдачи и пр., а также могут образовывать новые радиоизотопы (наведенная активность).
Для каждого вида излучений пространственное распределение поглощенной энергии, затраченной на «производство» пар ионов по всей длине пробега излучения в облучаемой среде и последствия этого, в том числе радиобиологические эффекты, имеют явно выраженную специфику. Чем больше потери энергии на единице пути пробега излучения, тем меньше пробег. Очень малую длину пробега в среде имеет альфа-излучение в силу того, что оно обладает самой большой удельной ионизацией или плотностью ионизации. Это значит, что альфа-частицы расходуют (на ионизацию) всю свою энергию на очень малой длине пробега; иными словами, альфа-излучение имеет самую большую величину линейной передачи энергии (ЛПЭ–пространственное распределение энергии вдоль траектории частицы), (кэВ/мкм). Отметим, что гамма- и рентгеновское излучения имеют самую низкую величину ЛПЭ.
Таким образом, при равенстве энергий длина пробега в среде бета-излучения будет значительно больше, чем альфа-излучения. Особенностью рентгеновского и гамма-излучений является их самая большая проникающая способность (при малой плотности ионизации).
Физические свойства рентгеновского излучения
ЛПЭ – это энергия, локально переданная среде движущейся заряженной частицей при перемещении ее на некоторое расстояние, к этому расстоянию: ЛПЭ=dE/dl.
Все электромагнитное излучение может быть представлено как непрерывный спектр от низкого энергетического уровня до высокого: от радиоволн (волн Герца) до космического излучения (или излучения, получаемого в мощных ускорителях). Не все типы электромагнитных излучений (ЭМИ) относятся к категории ионизирующих. Среди ЭМИ только те способны вызвать ионизацию атомов облучаемой среды, энергетические кванты которых по меньшей мере равны энергии связи электронов в атоме. Эта энергия связи для некоторых металлов порядка 4 эВ и УФ-излучение с длинами волн ниже 3000 Å способны вызвать ионизацию этих металлов. Между тем название «ионизирующее излучение» сохраняется только за излучением, способным ионизировать воздух, то есть кванты которых имеют энергию выше чем 15 эВ.
Согласно этому, ионизирующими свойствами обладают излучения, расположенные в шкале ЭМИ правее УФ-излучения.
Переход от одного вида электромагнитного излучения к другому достаточно условен. В представленном выше спектре ЭМИ рентгеновское
и гамма-излучение одной длины волны – это одни и те же фотоны, различие состоит, во-первых, в их происхождении и, во-вторых, в том, что рентгеновское излучение состоит из двух компонент (тормозное и характеристическое излучение). Несмотря на то, что поглощающие свойства рентгеновского и гамма-излучения при равных энергиях одинаковы, но распределение его в теле из-за разной однородности (по энергии) различно.
Сравнительные данные для различных электромагнитных излучений
Область спектра
Длина волны (l), нм
Частота (n), герц
Энергия кванта (hn), эВ
Видимые лучи
4,3×10 14
5×10 14
6×10 14
7,7×10 14
8,6×10 14
10 15
1,5×10 15
3×10 16
Рентгеновское излучение
3×10 17
3×10 18
3×10 19
3×10 20
1250
1,25×10 4 (12,5 кэВ)
1,25×10 5 (125 кэВ)
1,25×10 6
Гамма-излучение (условная граница диапазона)
3×10 21
1,25×10 7
Электромагнитное излучение обладает следующими свойствами:
Для понимания формирования рентгеновского изображения также используется понятие «фотоны», энергия которых и определяет взаимодействие излучения с телом пациента, рентгеновской пленкой, усиливающими экранами и др. объектами.
Перечислим основные свойства рентгеновского излучения, делающие этот вид ионизирующего излучения незаменимым в визуальной диагностике:
4. Рентгеновское излучение, обладая высокой энергией и воздействуя на вещество, приводит к его ионизации.
Генерирование рентгеновского излучения
Практический путь получения рентгеновского излучения – это «разгон» электронов (электрическим полем) до высоких энергий и «обстрел» ими атомов вещества-мишени (анода). Рентгеновское излучение возникает при резком торможении высокоэнергетических электронов на аноде рентгеновской трубки.
Согласно классической теории электромагнетизма электрический заряд, подвергнутый ускорению (положительному или отрицательному), при резком торможении в электрическом поле ядер атомов мишени испускает электромагнитное излучение. Генерируемое таким способом рентгеновское излучение состоит из двух компонент: тормозного и характеристического рентгеновского излучения.
Количественное соотношение характеристической и тормозной компонент в значительной степени зависит от напряжения на рентгеновской трубке. Рентгеновское излучение, используемое для диагностических целей, почти полностью состоит из тормозного излучения.
Рентгеновская трубка является основным элементом любого рентгеновского аппарата. В ней происходит генерирование рентгеновского излучения. Рентгеновская трубка представляет собой высоковольтный электровакуумный прибор с двумя электродами: катодом (-) и анодом (+).
В последнее время появились рентгеновские трубки с сеточным управлением, которые позволяют формировать импульсы рентгеновского излучения с крутыми фронтами. Это особенно важно для рентгеноскопии.
Электроны разгоняются сильным электрическим полем (главная цепь), которое создается высоким напряжением (Ua), приложенным между электродами.
Катод имеет вольфрамовую нить, которая накаливается электрическим током и служит источником свободных электронов. На нить накала подается небольшое, около 10 В, напряжение. В этом случае (в электронных рентгеновских трубках) используется явление термоэлектронной эмиссии электронов. Чем выше температура катода, тем больше скорость испускания электронов и их количество. Далее к электродам рентгеновской трубки подводится высокое напряжение, и электроны устремляются к положительно заряженному аноду.
Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований. В рентгенодиагностике применяются излучатели двух типов: излучатель в виде защитного кожуха с рентгеновской трубкой стационарного аппарата и излучатель в виде моноблока. Надежная работа излучателя возможна только при условии, что он не перегрет. При неправильной эксплуатации (превышение допустимой мощности, слишком частые включения, несоблюдение перерывов между отдельными включениями) трубка может выйти из строя.
Моноблочная конструкция позволяет обойтись без высоковольтных кабелей и разъемов, благодаря чему экономятся масса и габаритные размеры.
Почти вся кинетическая энергия тормозящихся электронов превращается в тепловую энергию, и лишь малая доля порядка 1 % превращается в энергию рентгеновского излучения. Поэтому в трубках должно предусматриваться охлаждение анода. Вследствие эрозии анода интенсивность рентгеновского излучения в процессе эксплуатации трубки падает. За срок службы трубки принимается такое количество включений на предельных режимах, за которое доза излучения уменьшается не более чем на 30 %. Это
1000-40 000 включений.
Электрическая мощность рентгеновской трубки (Р, кВт) – это произведение максимального анодного напряжения (кВ) на среднее значение анодного тока (А):
Допустимая мощность, то есть мощность, которую можно подвести к аноду трубки без его перегрева, зависит от длительности рабочего включения трубки: чем меньше выдержка, тем больше допустимая мощность.
Допустимая мощность определяется также видом схемы выпрямления рентгеновского аппарата. В трехфазных аппаратах допустимая мощность в 1,5 раза больше, чем в однофазных.
Таким образом, рентгеновским питающим устройством определяется возможность работы рентгеновского аппарата в импульсном режиме, а также нагрузочная способность трубки является важным фактором, влияющим на качество изображения.
Участок поверхности анода, на котором тормозятся электроны, называется действительнымфокусным пятном. Рентгеновское излучение распространяется от фокусного пятна прямолинейно в виде расходящегося пучка. При практическом использовании рентгеновского излучения важно, чтобы рентгеновская трубка имела небольшое, резко выраженное фокусное пятно. Формирователи пучка излучения – фильтры, диафрагмы, тубусы – служат для направления пучка и ограничения зоны облучения, соответственно снимаемому объекту.
В рентгенодиагностике применяются излучатели двух типов: излучатель в виде защитного кожуха с рентгеновской трубкой стационарного аппарата и излучатель в виде моноблока.
Рентгеновская трубка, свинцовая защита от неиспользуемого излучения и пр. закрепляются в защитный кожух, представляющий собой отрезок металлической трубы с отверстиями для присоединения высоковольтных кабелей и окно, через которое выходит рабочий пучок излучения. Кожух заполняют трансформаторным маслом. Эта конструкция называется рентгеновским излучателем. Его надежная работа возможна только при условии, что он не перегрет: наружная температура кожуха – не более 80 0 С.
Моноблок отличается от кожуха тем, что кроме перечисленных выше элементов, он содержит высоковольтный трансформатор, выпрямители и трансформатор накала. Моноблочная конструкция позволяет обходиться без высоковольтных кабелей и разъемов.
Чем выше разность потенциалов (Ua) между катодом и анодом, тем больше энергия электронов. Для возбуждения рентгеновского излучения на рентгеновскую трубку нужно подать напряжение порядка нескольких тысяч вольт (нескольких десятков кВ); при этом идеальной формой кривой напряжения является постоянное напряжение. Величина напряжения на рентгеновской трубке Ua (кВ) определяет такую важную характеристику рентгеновского излучения, как его максимальную энергию Емакс(кэВ), а значит и проникающую способность рентгеновского излучения.
В зависимости от применяемого при медицинской рентгенографии напряжения на рентгеновской трубке технику производства рентгенограмм по «жесткости» излучения можно разделить на 3 вида:
Ортопантомография до 125 кВ, компьютерная томография – 100-150 кВ.
В соответствии с принципом нормирования (ОСПОРБ-99/2010):
облучение пациентов всегда преднамеренно и добровольно, поскольку предназначено принести им больше пользы от уточнения диагноза, чем вреда от дополнительного облучения.
Поэтому методы регулирования медицинского облучения пациентов должны быть соразмерны получаемой ими пользе и не должны препятствовать оказанию необходимой медицинской помощи.
Изобретенный более ста лет назад уникальный метод неинвазивного исследования внутренних органов – рентгенография – в настоящее время применяется для диагностики различных патологий в таких областях медицины, как остеология, неврология, пульмонология, оториноларингология, кардиология, гастроэнтерология, урология, гинекология, стоматология.
Хотя бы раз в жизни рентгеновский снимок приходится сделать каждому человеку. Что же при этом происходит и почему этот диагностический метод так популярен?
Что такое рентгенография?
Рентгенография – это исследование внутренней структуры тела путем просвечивания его рентгеновскими лучами и фиксирование результатов на специальную пленку. История рентгенологии началась в 1895 году. Именно тогда Вильгельмом Конрадом Рентгеном впервые было зарегистрировано затемнение фотопластинки под воздействием рентгеновского излучения. Он же установил, что рентгеновские лучи при прохождении различных тканей ослабляются по-разному, и за счет этого на фотопластинке можно получить различные изображения – например, костного скелета. Рентгенография стала первым в мире неинвазивным методом исследования внутренних органов и тканей.
Вплоть до настоящего времени рентгенография является основным методом диагностики при патологиях костно-суставной системы. Также важную роль этот метод играет при обследовании легких. Для оценки состояния внутреннего рельефа полых органов делается контрастная рентгенография. Принцип рентгенографии лег в основу более сложных современных исследований – например, компьютерной томографии.
Хотя рентгеновское излучение является ионизирующим и может оказать негативное влияние на организм, единственным серьезным противопоказанием для рентгенографии является беременность, и то – в качестве перестраховки. В случае контрастных исследований важно удостовериться, что у пациента нет индивидуальной непереносимости контрастирующих веществ. Современные диагностические аппараты продуцируют настолько незначительные разовые дозы рентгеновских лучей, что такое облучение укладывается в рамки естественного радиационного фона.
Достоинства и недостатки метода
Как и любой другой метод исследования, рентгенография имеет свои плюсы и минусы. Высокая разрешающая способность рентгеновских пленок позволяет получать снимки с достаточной степенью детализации, по которым может быть определена степень активности патологического процесса и реакция окружающих тканей. Рентгенограмма является диагностическим документом и, сравнивая ее с последующими снимками, можно судить о динамике патологического процесса. Недостаток классического метода – невозможность оценить состояние органов, находящихся в движении, и большие временные затраты на обработку пленки.
Виды исследования
Рентгенография легких представляет собой снимок грудной клетки в прямой и/или боковых проекциях, позволяющий оценить наличие и степень патологических изменений в легочной ткани.
Подготовка к процедуре
Если пациенту назначена рентгенография пояснично-крестцового отдела позвоночника или органов брюшной полости, рекомендуется за два дня до исследования придерживаться бесшлаковой диеты, а накануне провести очистительную клизму или принять препарат «Фортранс». Остальные виды рентгенографии не требуют специальной подготовки пациента.
Особенности проведения рентгенографии
Рентгенографию проводят с помощью различных рентгеновских приборов, которые могут быть как крупногабаритными, так и небольшими. Как правило, при проведении исследования пациент находится в одной комнате, а врач-рентгенолог в смежной смотровой, откуда подает команды – например, задержать дыхание.
Контрастную рентгенографию обычно проводят утром, натощак или после легкого завтрака. Бесконтрастное исследование может быть назначено на любое время. Продолжительность процедуры составляет несколько минут, кроме случаев, когда требуется сделать серию снимков с заданной периодичностью. Отдельно требуется время на проявку, сушку и описание снимков.
Рентгенография может проводиться в положении пациента стоя, сидя или лежа, в зависимости от назначенного исследования. В область облучения не должны попасть металлические украшения или застежки, которые будут видны на рентгеновском снимке и исказят результаты.
Анализ результатов
Четкость и точность полученного рентгеновского снимка зависят от напряжения и силы тока в рентгеновской трубке и времени ее работы. Эти параметры должны выставляться индивидуально в зависимости от исследования и массогабаритных характеристик пациента. К каждому рентгеновскому аппарату прилагается таблица средних значений для различных органов и тканей, однако врачу-рентгенологу приходится их корректировать для каждого конкретного случая. От того, насколько правильно он это сделает, будет зависеть качество исследования. Также очень важна неподвижность пациента во время процедуры.
Запись изображения проводится на рентгеночувствительную пленку либо на цифровой носитель с помощью компьютера. Регистрация рентгеновских данных в цифровом виде пока еще стоит дорого, поэтому традиционные рентгеновские пленки не теряют своей актуальности и применяются повсеместно.
При описании рентгеновского снимка следует учитывать, что изображение формируется расходящимися пучками лучей, поэтому кроме полученных размеров исследуемых объектов анализу подлежат затемнения и просветления.
Где сделать рентген в Махачкале?
В нашем центре имеется современный аппарат, пройти рентгенографию в нашем центре – легко! Звоните и записывайтесь!
Многие проблемы со здоровьем невозможно определить без точной диагностики или рентгена. Например, когда у нас есть подозрение на пневмонию, мы часто слышим от доктора – «нужно сделать флюрографию». А что из себя представляет рентгеновское исследование? И почему врачи часто его рекомендуют?
Флюрография – самая популярная разновидность рентгена.
Что же такое рентген? Если говорить профессиональным медицинским языком рентген – это детальное исследование внутренней структуры тела путем просвечивания его рентгеновскими лучами и фиксирование изображения на специальную пленку или цифровой детектор т.е рентгеновские лучи проникают сквозь ткани организма, не повреждая их формируют картину о состоянии органов человека.
Что показывает рентген? На снимках можно увидеть (в зависимости от назначения аппарата) различную патологию: воспаление, переломы, новообразования (опухоли), дегенеративно-дистрофические изменения, деструктивные изменения, аномалии развития и т.д. Рентгеновские методы применяются в обследовании легких, костей, мягких тканей, внутренних органов (желудка, почек и т.д.).
После рентгеновского исследования врач может поставить точный диагноз в ряде сложных заболеваний.
Как часто можно делать рентген?
Рентген бывает профилактический и диагностический. В целях профилактики делают флюорографию или рентгенографию органов грудной полости (не реже 1 раза в год), маммографию (не реже 1 раза в два года). Диагностический рентген (в т.ч. флюорографию) делают при подозрении на наличие каких-либо заболеваний, назначается он лечащим врачом. Пределы доз облучения пациентов (а соответственно и количество рентгеновских процедур) с диагностическими целями не устанавливаются ( СанПиН 2.6.1.1192-03).
Какая норма допустима?
Нужно ли выводить радиацию из организма после рентгеновского исследования?
После рентгенографических исследований выводить радиацию не нужно, так как доза облучения ничтожно мала. Даже после сцинтиграфии, при которой в вену вводят радиоактивный препарат, рекомендуется лишь пить больше жидкости.
Немаловажную роль играет качественное современное оборудование и грамотная работа с аппаратом специалиста.
В МЦ «Санас» рентген делают на лучшем японском оборудовании нового поколения Shimadzu SONIALVISION G4. Это лучший в своем классе и единственный на Дальнем Востоке мультикомплекс, который по мимо стандартных рентгенографических функций, обладает уникальными функциями – томосинтез (послойное исследование) и SLOT-рентгенография (панорамный снимок позвоночника или нижних конечностей). Обеспечивает высочайшее качество снимков и детальную передачу информации при минимальной дозе облучения.
7 бесспорных преимуществ Shimadzu SONIALVISION G4 перед другими аппаратами:
SONIALVISION G4 – универсальный телеуправляемый рентгеновский диагностический комплекс класса «Премиум». Многоцелевая система «Все в одном» задает новые стандарты универсальных систем визуализации, увеличивая продуктивность рентгенологического кабинета по сравнению с обычными системами.
SONIALVISION G4 признан лучшим в своем классе универсальным рентгеновским аппаратом. Независимая аналитическая компания KLAS вручила компании Shimaszu Medical Systems награду«2015 Best in KLAS award» в сегменте рентгеновского оборудования.
Первый в мире телеуправляемый аппарат с функциейтомосинтеза – это рентгенографический метод исследования, при котором производится послойное изображение исследуемой области с толщиной среза от 0,5 мм, что позволяет увидеть мельчайшие патологические изменения до 1 мм. Диагностические возможности этого метода намного шире, нежели при обычной цифровой рентгенографии.
Томосинтез существенно расширяет пределы обнаружения меньших патологических изменений, чем традиционная рентгенография. 74% очаговоподобных теней (очаговоподобные тени могут быть при опухолях, метастазах, туберкулёзе и других патологических процессах), выявляются при томосинтезе по сравнению с 25 % при стандартной рентгенографии, что указывает на трехкратное увеличение чувствительности обнаружения при томосинтезе. При цифровой рентгенографии в 21,3 % не удалось выявить изменений метастатического характера в легких, которые определялись при томосинтезе. Информативность томосинтеза при выявлении периферического рака легких доказана учеными Исследовательского центра по предупреждению и скринингу рака (Токио, Чиба).
Низкая доза облучения позволяет использовать томосинтез как скрининговый метод, в отличие от компьютерной томографии. В низкодозовом режиме (20 срезов) доза не превышает 0,001 мЗв, что соответствует нормам радиационной безопасности.
Еще одним преимуществом томосинтеза перед методом компьютерной томографии является возможность обследования пациентов с металлическими имплантатами без возникновения артефактов.
SLOT-рентгенография – (она же панорамная рентгенография, щелевая рентгенография, осевая рентгенография, телерентгенограмма). Этот метод позволяет произвести панорамный снимок всех отделов позвоночника с захватом таза или нижних конечностей с захватом таза на одном изображении за один проход рентгеновской трубки. Изображение получается с истинными анатомическими размерами в отличие от метода сшивки изображений. Слот-рентгенография эффективно применяется для диагностики: сколиозов, укорочений и деформации нижних конечностей, перекоса и ротации костей таза. Этот метод необходим для работы врачей-ортопедов, мануальных терапевтов.
Продуманная конструкция аппарата обеспечивает проведение всех исследований без перемещения пациента, охват «голова – ноги» составляет 202 см.