Физический смысл диэлектрической проницаемости среды в чем заключается

БИЛЕТ 6 Диэлектрическая проницаемость вещества. Электрическое поле в однородном диэлектрике.

Диэлектрическая проницаемость, величина, характеризующая диэлектрические свойства среды — её реакцию на электрическое поле. В соотношении D = eЕ, где Е — напряжённость электрического поля, D — электрическая индукция в среде, Д. п. — коэффициент пропорциональности e. В большинстве диэлектриков при не очень сильных полях Д. п. не зависит от поля Е. В сильных электрических полях (сравнимых с внутриатомными полями), а в некоторых диэлектриках (например, сегнетоэлектриках) в обычных полях зависимость D от Е — нелинейная. По физическому смыслу диэлектрическая проницаемость — количественная мера интенсивности процесса поляризации. Поляризация представляет собой смещение связанных зарядов под действием внешнего электрического поля.

Рассмотрим простейший случай диэлектрической среды, где все поле заполнено однородным диэлектриком. В этом случае e=const, a=const и могут быть вынесены за знак производной:

divD=diveE=edivE=r

divE=- Физический смысл диэлектрической проницаемости среды в чем заключается 2 j= Физический смысл диэлектрической проницаемости среды в чем заключается

Это значит, что при заданном распределении свободных зарядов потенциал и напряженность в однородном диэлектрике в e раз меньше напряженности и потенциала в вакууме. Что часто бывает положено в основу всей теории диэлектриков.

7 БИЛЕТ. Сила и плотность тока. Уравнение непрерывности дляплотности тока. ЗаконОма винтегральной и дифференциальной формах.Закон Джоуля-Ленца. Закон Видемана-Франца.

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока и всюду ортогональности ее плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока:

Физический смысл диэлектрической проницаемости среды в чем заключается

Силой тока называется физическая величина Физический смысл диэлектрической проницаемости среды в чем заключается, равная отношению количества заряда Физический смысл диэлектрической проницаемости среды в чем заключается, прошедшего за некоторое время Физический смысл диэлектрической проницаемости среды в чем заключаетсячерез поперечное сечение проводника, к величине этого промежутка времени [1] :

Физический смысл диэлектрической проницаемости среды в чем заключается

Физический смысл диэлектрической проницаемости среды в чем заключается.

Таким образом в каждой точке пространства выполняется условие

Физический смысл диэлектрической проницаемости среды в чем заключается,которое является дифференциальной формой уравнения непрерывности.
Если токи постоянны, то все электрические величины не зависят от времени и в уравнении непрерывности нужно положить Физический смысл диэлектрической проницаемости среды в чем заключаетсяравным нулю. Тогда Физический смысл диэлектрической проницаемости среды в чем заключается, следовательно, в случае постоянного тока вектор j не имеет источников. Это означает, что линии тока нигде не начинаются и нигде не заканчиваются, т. е. они замкнуты.

ЗаконОма винтегральной и дифференциальной формах. Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается— зависящий от свойств материала коэффициент, называемый удельным электрическим сопротивлением., E – напряжённость тока, j – плотность тока.

Закон Джоуля Ленца — Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

Физический смысл диэлектрической проницаемости среды в чем заключается

Закон Видемана-Франца. Металлы обладают как большой электропроводностью, так и высокой теплопроводностью.Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности () к удельной проводимости () для всех металлов при одной и той же температуре одинаково и увеличивается пропорционально термодинамической температуре:

Физический смысл диэлектрической проницаемости среды в чем заключаетсягде  — постоянная, не зависящая от рода металла.

8 БИЛЕТ.Электродвижущаясила источника тока. Правило Кирхгофа

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Первое правило Кирхгофа является следствием закона сохранения заряда, согласно которому ни в одной точке проводника не должны накапливаться или исчезать заряды.

Первое правило Кирхгофа можно сформулировать и так: количество зарядов, приходящих в данную точку проводника за некоторое время, равно количеству зарядов, уходящих из данной точки за то же время.

Источник

Физический смысл диэлектрической проницаемости вещества. Условия на границе раздела диэлектриков с различной диэлектрической проницаемостью.

Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается

Физический смысл диэлектрической проницаемости среды в чем заключается

Физический смысл диэлектрической проницаемости среды в чем заключается

ε — безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч. Физический смысл диэлектрической проницаемости среды в чем заключается

увеличивает электроёмкость за счёт физических свойств вещества-изолятора

Нормальная составляющая вектора напряженности Е на границе двух диэлектриков скачкообразно изменяется обратно пропорционально относительным проницаемостям этих сред: Е1/Е2=е1/е2

Нормальная составляющая вектора электрического смещения D не изменяется при переходе границы.

Тангенциальная составляющая вектора Е не изменяется при переходе границы.

Тангенциальная составляющая вектора D на границе двух диэлектриков скачкообразно изменяется прямо пропорционально относительным проницаемостям этих сред.

Поле вектора D наглядно можно изобразить с помощью линий этого вектора. Линии вектора E начинаются и заканчиваются как на свободных, так и на связанных зарядах. Источниками и стоками поля вектора D являются только свободные заряды: только на них могут начинаться и заканчиваться линии этого вектора. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.

линии поля вектора E

Пьезоэлектрики— кристаллические вещества, в которых при сжатии или растяжении в определённых направлениях возникает электрическая поляризация даже в отсутствии поля.

Если же кварцевую пластинку сжать в направлении, перпендикулярном первоначальному, то возникает поперечный пьезоэффект, т.е. полярность зарядов на гранях пластинки изменится на обратную, соответственно изменяется и направление вектора напряженности электрического поля.

Пьезоэффектобратим, т.е. если на гранях кварца создать разноименные заряды, то он либо сжимается, либо растягивался в зависимости от их полярности (обратный пьезоэффект).

Деформация диэлектрика зависит линейно от напряженности Е внешнего электрического поля.

Пироэлектрики

С пьезоэлектрическими свойствами веществ тесно связаны их пироэлектрические свойства. В кристалле при нагревании возникают внутренние напряжения, вызванные температурными градиентами. В результате на поверхности кристалла появляются электрические заряды.

Природа пироэлектричества была открыта в 1756 г. на кристаллах турмалина и объяснена русским академиком Эпинусом, который впервые объяснил и поляризацию

Пироэлектрики используютсяв технике в качестве индикаторов и приёмников излучений.

Сегнетоэлектрики – кристаллические, диэлектрики, обладающие в определённом интервале температур спонтанной (самопроизвольной) поляризацией, которая существенно изменяется под влиянием внешних воздействий. Впервые явление было обнаружено у сегнетовой соли и было названо сегнетоэлектричеством.

Сегнетоэлектрический эффект наблюдается только в определенном интервале температур. Сегнетова соль, например, сегнетоэлектрик при температурах от
–18° до +24°С, титанат бария — при температуре ниже 125°С. Эта температура называетс сегнтоэлектрической точкой Кюри (qс). При t > qс сегнетоэлектрик превращается в обычный диэлектрик.

Электреты – диэлектрики, длительно сохраняющие поляризованное состояние после снятия внешнего воздействия, вызвавшего поляризацию, и создающие электрическое поле в окружающем

Физический смысл диэлектрической проницаемости среды в чем заключается

Электреты применяют как источники постоянного электрического поля (электретные микрофоны и телефоны, вибродатчики, генераторы слабых сигналов, электрометры, электростатические вольтметры

10 Энергия электрического поля, ее объемная плотность.

Физический смысл диэлектрической проницаемости среды в чем заключаетсяЭнергия заряженного конденсатора

Физический смысл диэлектрической проницаемости среды в чем заключаетсялокализована в его электрическом поле.

Для плоского конденсатора

Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключаетсяОбъёмная плотность энергии электрического поля равна

Физический смысл диэлектрической проницаемости среды в чем заключается

Физический смысл диэлектрической проницаемости среды в чем заключаетсяОбъемная плотность энергии электричес- кого поля при наличии диэлектрика в e раз больше, чем при отсутствии диэлек- трика.

Физический смысл диэлектрической проницаемости среды в чем заключается— соответствует объемной плотности энергии поля в вакууме.

Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается— связано с дополнительной объем- ной плотностью энергии, расходуемой на поляризацию диэлектрика Формула объемной плотности энергии поля справедлива не только для однородного поля, но и для любого не однородного поля, изменяющегося во времени. Тогда энергию неоднородного поля можно найти интегрированием по объему, занимаемым полем.

Постоя́нный ток — электрический ток, который с течением времени не изменяется по величине и направлению

Хар-ка :

· Сила тока — это количество электричества Q, протекающее через поперечное сечение проводника в единицу времени.

· Плотность тока — это отношение силы тока I к площади поперечного сечения S проводника δ = I/S.

Источник

Лекция 1.3.2. диэлектрическая проницаемость

Введение[править]

Физический смысл диэлектрической проницаемости среды в чем заключается
В диэлектрической среде показана ориентация заряженных частиц при создании поляризационных эффектов. Такая среда может иметь более высокий коэффициент электрического потока для зарядки (диэлектрической проницаемости), чем пустое место

где εr — относительная диэлектрическая проницаемость материала en:Relative_permittivity, и ε = 8.8541878176.. × 10-12 F/m — диэлектрическая проницаемость вакуума en:Vacuum_permittivity.

Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается

Фарадправить

Фара́д (обозначение: Ф, F) — единица измерения электрической ёмкости в системе СИ (система единиц) (ранее называлась фара́да).

1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт.

Единица названа в честь английского физика Майкла Фарадея

Эффект поляризации диэлектрика и проницаемость

Под воздействием электрического поля в диэлектрике имеет место поляризация — явление, связанное с ограниченным смещением зарядов или поворотом электрических диполей. Данное явление характеризует вектор электрической поляризации P <\displaystyle \mathbf

>, равный дипольному моменту единицы объёма диэлектрика. В отсутствие внешнего поля диполи ориентированы хаотично (см. верхний рис.), за исключением особых случаев спонтанной поляризации в сегнетоэлектриках. При наличии поля диполи в большей или меньшей степени поворачиваются (нижний рис.), в зависимости от восприимчивости χ(ω) <\displaystyle \chi (\omega )>конкретного материала, а восприимчивость, в свою очередь, определяет проницаемость ε(ω)<\displaystyle \varepsilon (\omega )>. Помимо дипольно-ориентационного, имеются и поляризации. Поляризация не изменяет суммарного заряда в любом макроскопическом объёме, однако она сопровождается появлением связанных электрических зарядов на поверхности диэлектрика и в местах неоднородностей. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле, как правило, направленное против внешнего наложенного поля. В итоге тот факт, что εa≠ε<\displaystyle \varepsilon _\neq \varepsilon _<0>>, является следствием электрической поляризации материалов.

Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается

Роль диэлектрической проницаемости среды в физике

Относительная диэлектрическая проницаемость ε <\displaystyle \varepsilon >среды, наряду с её относительной магнитной проницаемостью μ <\displaystyle \mu >и удельной электропроводностью σ<\displaystyle \sigma >, влияет на распределение напряжённости электромагнитного поля в пространстве и используется при описании среды в системе уравнений Максвелла. Среду со значениями μ=1 <\displaystyle \mu =1>и σ= <\displaystyle \sigma=0> называют идеальным диэлектриком (диэлектриком без поглощения, диэлектриком без потерь), для неё ε <\displaystyle \varepsilon >определяет такие вторичные параметры, как коэффициент преломления среды, скорость распространения, фазовую скорость и коэффициент укорочения длины электромагнитной волны в среде, волновое сопротивление среды. Относительная диэлектрическая проницаемость реальных диэлектриков (диэлектриков с потерями, диэлектриков с поглощением, для которых σ><\displaystyle \sigma >0>) также влияет на значение тангенса угла диэлектрических потерь и погонное затухание электромагнитной волны в среде. Относительная диэлектрическая проницаемость среды влияет на электрическую ёмкость расположенных в ней проводников: увеличение ε <\displaystyle \varepsilon >приводит к увеличению ёмкости. При изменении ε <\displaystyle \varepsilon >в пространстве (то есть если ε <\displaystyle \varepsilon >зависит от координат) говорят о неоднородной среде, зависимость ε <\displaystyle \varepsilon >от частоты электромагнитных колебаний — одна из возможных причин дисперсии электромагнитных волн, зависимость ε <\displaystyle \varepsilon >от напряженности электрического поля — одна из возможных причин нелинейности среды. Если среда является анизотропной, то в материальном уравнении ε <\displaystyle \varepsilon >будет не скаляром, а тензором. При использовании метода комплексных амплитуд в решении системы уравнений Максвелла и наличии потерь в среде (σ><\displaystyle \sigma >0>) оперируют комплексной диэлектрической проницаемостью.

Таким образом, ε <\displaystyle \varepsilon >является одним из важнейших «электромагнитных параметров» соответствующей среды.

Численное значение

В Международной системе единиц

До изменения СИ 2018—2019 годов

Поскольку в СИ для магнитной постоянной было справедливо точное равенство μ=4π × 10−7 <\displaystyle \mu _<0>=4\pi \ \times \ 10^<-7>\ >Гн/м, то для электрической постоянной выполнялось соотношение

также являвшееся точным.

Учитывая, что скорости света в СИ приписано точное значение, по определению равное 299 792 458 м/с, из последнего соотношения следует численное значение ε<\displaystyle \varepsilon _<0>> в СИ:

Или, выражая то же через основные единицы СИ,

ε ≈ 8,85418781762039 · 10−12 м−3·кг−1·с4·А2.

После изменений СИ 2018—2019 годов

С 2019 года вступили в силу изменения в СИ, включающие, в частности, переопределение ампера на основе фиксации численного значения элементарного заряда. Это привело к тому, что значение электрической постоянной стало экспериментально определяемой величиной, хотя численно её значение осталось прежним с высокой точностью. Значение электрической постоянной, рекомендованное CODATA:

Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается Физический смысл диэлектрической проницаемости среды в чем заключается

В системе СГС электрическая постоянная как коэффициент, связывающий напряжённость и индукцию электрического поля в вакууме, также может быть введена. При этом в различных вариантах системы СГС электрическая постоянная имеет разную размерность и значение. Конкретно, Гауссова система единиц и система СГСЭ построены так, что электрическая постоянная безразмерна и равна 1, а в системе СГСМ она равна ε = 1/c2 ≈ 1,11265005605362 · 10−21 с2·см−2.

Источник

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ (диэлектрическая постоянная) — физическая величина, характеризующая способность вещества уменьшать силы электрического взаимодействия в этом веществе по сравнению с вакуумом. Т. о., Д. п. показывает, во сколько раз силы электрического взаимодействия в веществе меньше, чем в вакууме.

Д. п.— характеристика, зависящая от строения вещества-диэлектрика. Электроны, ионы, атомы, молекулы или их отдельные части и более крупные участки какого-либо вещества в электрическом поле поляризуются (см. Поляризация), что приводит к частичной нейтрализации внешнего электрического поля. Если частота электрического поля соизмерима с временем поляризации вещества, то в определенном диапазоне частот имеет место дисперсия Д. п., т. е. зависимость ее величины от частоты (см. Дисперсия). Д. п. вещества зависит как от электрических свойств атомов и молекул, так и от их взаимного расположения, т. е. строения вещества. Поэтому определение Д. п. или ее изменения в зависимости от окружающих условий используют при исследовании структуры вещества, и в частности различных тканей организма (см. Электропроводность биологических систем).

Различные вещества (диэлектрики) в зависимости от их строения и агрегатного состояния имеют различную величину Д. п. (табл.).

Таблица. Значение диэлектрической проницаемости некоторых веществ

Неполярные жидкие и твердые диэлектрики, не содержащие ионов

Полярные жидкости, полярные полимеры

Ионные и дипольные кристаллы

Гетерогенные структуры с участками, обладающими различной электрической проводимостью

Особое значение для мед.-биол, исследований имеет изучение Д. и. в полярных жидкостях. Типичным их представителем является вода, состоящая из диполей, которые в электрическом поле ориентируются благодаря взаимодействию между зарядами диполя и полем, что приводит к возникновению дипольной или ориентационной поляризации. Высокая величина Д. п. воды (80 при t° 20°) определяет высокую степень диссоциации в ней различных хим. веществ и хорошую растворимость солей, к-т, оснований и других соединений (см. Диссоциация, Электролиты). С увеличением концентрации электролита в воде величина ее Д. п. уменьшается (напр., для одновалентных электролитов Д. п. воды уменьшается на единицу при увеличении концентрации соли на 0,1 М).

Большинство биол, объектов относится к гетерогенным диэлектрикам. При взаимодействии ионов биол, объекта с электрическим полем существенное значение имеет поляризация границ раздела (см. Мембраны биологические). При этом величина поляризации тем больше, чем меньше частота электрического поля. Т. к. поляризация границ раздела биол, объекта зависит от их проницаемости (см.) для ионов, то очевидно, что эффективная Д. п. в большей степени определяется состоянием мембран.

Т. к. поляризация такого сложного гетерогенного объекта, как биологический, имеет различную природу (концентрационная, макроструктурная, ориентационная, ионная, электронная и др.), то становится понятным тот факт, что с возрастанием частоты изменение Д. п. (дисперсия) резко выражено. Условно выделяют три области дисперсии Д. п.: альфа-дисперсия (на частотах до 1 кгц), бета-дисперсия (частота от нескольких кгц до десятков мгц) и гамма-дисперсия (частоты выше 10 9 гц); в биол, объектах четкой границы между областями дисперсии обычно нет.

При ухудшении функц, состояния биол, объекта дисперсия Д. п. на низких частотах уменьшается вплоть до полного исчезновения (при отмирании тканей). На высоких частотах величина Д. п. существенно не изменяется.

Д. п. измеряют в широком диапазоне частот и в зависимости от диапазона частот существенно изменяются и методы измерения. При частотах электрического тока менее 1 гц измерение производят с помощью метода заряда или разряда конденсатора, заполненного исследуемым веществом. Зная зависимость зарядного или разрядного тока от времени, можно определить не только величину электрической емкости конденсатора, но и потери в нем. На частотах от 1 до 3•10 8 гц для измерения Д. и. применяют специальные резонансные и мостовые методы, которые позволяют комплексно исследовать изменения Д. п. различных веществ наиболее полно и разносторонне.

В мед.-биол, исследованиях чаще всего используют симметричные мосты переменного тока с непосредственным отсчетом измеряемых величин.

Библиография: Высокочастотный нагрев диэлектриков и полупроводников, под ред. А. В. Нетушила,М. —Л., 1959, библиогр.; С едунов Б. И. и Фран к-К а м е-н e ц к и й Д. А. Диэлектрическая проницаемость биологических объектов, Усп. физич. наук, т. 79, в. 4, с. 617, 1963, библиогр.; Электроника и кибернетика в биологии и медицине, пер. с англ., под ред. П. К. Анохина, с. 71, М., 1963, библиогр.; Э м e Ф. Диэлектрические измерения, пер. с нем., М., 1967, библиогр.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *