Физическая математика что это

Математическая физика

Математи́ческая фи́зика — теория математических моделей физических явлений. Она относится к математическим наукам; критерий истины в ней — математическое доказательство. Однако, в отличие от чисто математических наук, в математической физике исследуются физические задачи на математическом уровне, а результаты представляются в виде теорем, графиков, таблиц и т. д. и получают физическую интерпретацию. При таком широком понимании математической физики к ней следует относить и такие разделы механики, как теоретическая механика, гидродинамика и теория упругости. Редакционная коллегия журнала Journal of Mathematical Physics определяет математическую физику как «применение математики к физическим задачам и разработка математических методов, подходящих для таких приложений и для формулировок физических теорий». [1]

Близким понятием является теоретическая физика, которая разрабатывает новые математические модели для явлений, удовлетворительных моделей которых пока не построено, и иногда жертвует математической строгостью методов и моделей, в то время как математическая физика обычно формулирует и глубоко исследует уже построенные модели на математическом уровне строгости.

Содержание

История развития

Классическая математическая физика

Первоначально математическая физика сводилась к краевым задачам для дифференциальных уравнений. Это направление составляет предмет классической математической физики, которая сохраняет важное значение и в настоящее время.

Классическая математическая физика развивалась со времён Ньютона параллельно с развитием физики и математики. В конце XVII века было открыто дифференциальное и интегральное исчисление (И. Ньютон, Г. Лейбниц) и сформулированы основные законы классической механики и закон всемирного тяготения (И. Ньютон). В XVIII веке методы математической физики начали формироваться при изучении колебаний струн, стержней, маятников, а также задач, связанных с акустикой и гидродинамикой; закладываются основы аналитической механики (Ж. Даламбер, Л. Эйлер, Д. Бернулли, Ж. Лагранж, К. Гаусс, П. Лаплас). В XIX веке методы математической физики получили новое развитие в связи с задачами теплопроводности, диффузии, теории упругости, оптики, электродинамики, нелинейными волновыми процессами и т. д.; создаются теория потенциала, теория устойчивости движения (Ж. Фурье, С. Пуассон, Л. Больцман, О. Коши, М. В. Остроградский, П. Дирихле, Дж. К. Максвелл, Б. Риман, С. В. Ковалевская, Д. Стокс, Г. Р. Кирхгоф, А. Пуанкаре, А. М. Ляпунов, В. А. Стеклов, Д. Гильберт, Ж. Адамар, А. Н. Тихонов — некоторые из указанных здесь ученых творили и в XX веке или на рубеже XX и XIX веков). В XX веке возникают новые задачи газовой динамики, теории переноса частиц и физики плазмы.

Современная математическая физика

Источник

Физическая математика что это

Физическая математика что это

Математическая физика относится к разработке математических методов для применения к задачам в физика. В Журнал математической физики определяет эту область как «приложение математики к проблемам физики и развитие математических методов, подходящих для таких приложений и для формулирования физических теорий». [1]

Содержание

Объем

Есть несколько различных разделов математической физики, и они примерно соответствуют определенным историческим периодам.

Классическая механика

Строгая, абстрактная и продвинутая переформулировка ньютоновской механики с учетом Лагранжева механика и Гамильтонова механика даже при наличии ограничений. Обе формулировки воплощены в аналитическая механика и привести к пониманию глубокого взаимодействия понятий симметрии и сохраняемых величин во время динамической эволюции, воплощенного в самой элементарной формулировке Теорема Нётер. Эти подходы и идеи могут быть и фактически были распространены на другие области физики, например статистическая механика, механика сплошной среды, классическая теория поля и квантовая теория поля. Более того, они представили несколько примеров и идей в дифференциальная геометрия (например, несколько понятий в симплектическая геометрия и векторный набор).

Уравнения с частными производными

Следуя математике: теория уравнение в частных производных, вариационное исчисление, Анализ Фурье, теория потенциала, и векторный анализ возможно, наиболее тесно связаны с математической физикой. Они интенсивно развивались со второй половины XVIII века (например, Д’Аламбер, Эйлер, и Лагранж) до 1930-х гг. Физические применения этих разработок включают: гидродинамика, небесная механика, механика сплошной среды, теория упругости, акустика, термодинамика, электричество, магнетизм, и аэродинамика.

Квантовая теория

Относительность и квантовые релятивистские теории

В специальный и Общее теории относительности требуют совсем другого типа математики. Это было теория групп, которые сыграли важную роль в обоих квантовая теория поля и дифференциальная геометрия. Однако постепенно к этому добавились топология и функциональный анализ в математическом описании космологический а также квантовая теория поля явления. В математическом описании этой физической области некоторые понятия в гомологическая алгебра и теория категорий [ нужна цитата ] также важны в наши дни.

Статистическая механика

Статистическая механика образует отдельную область, в которую входит теория фазовые переходы. Он полагается на Гамильтонова механика (или его квантовая версия) и тесно связана с более математической эргодическая теория и некоторые части теория вероятности. Между комбинаторика и физика, в частности статистической физики.

Применение

Физическая математика что это

Термин «математическая физика» иногда используется идиосинкразический. Некоторые разделы математики, которые изначально возникли в результате развития физика на самом деле не считаются частями математической физики, в отличие от других тесно связанных областей. Например, обыкновенные дифференциальные уравнения и симплектическая геометрия обычно рассматриваются как чисто математические дисциплины, тогда как динамические системы и Гамильтонова механика относятся к математической физике. Джон Герапат использовал этот термин для названия своего текста 1847 года о «математических принципах натурфилософии»; сфера деятельности в то время заключалась в «причинах нагрева, газовой упругости, гравитации и других великих явлений природы». [2]

Математическая физика против теоретической

Термин «математическая физика» иногда используется для обозначения исследований, направленных на изучение и решение проблем в физике или физике. мысленные эксперименты в математически тщательный фреймворк. В этом смысле математическая физика охватывает очень широкую академическую область, отличающуюся только сочетанием некоторых математических аспектов и теоретических аспектов физики. Хотя связано с теоретическая физика, [3] математическая физика в этом смысле подчеркивает математическую строгость того же типа, что и математика.

Такие математические физики в первую очередь расширяют и разъясняют физическую теории. Из-за необходимого уровня математической строгости эти исследователи часто имеют дело с вопросами, которые физики-теоретики считают уже решенными. Однако иногда они могут показать, что предыдущее решение было неполным, неправильным или просто слишком наивным. Вопросы о попытках вывести второй закон термодинамика из статистическая механика являются примерами. Другие примеры касаются тонкостей, связанных с процедурами синхронизации в специальной и общей теории относительности (Эффект Саньяка и Синхронизация Эйнштейна).

Попытки поставить физические теории на математически строгую основу не только развили физику, но также повлияли на развитие некоторых математических областей. Например, развитие квантовой механики и некоторых аспектов функциональный анализ во многом параллельны друг другу. Математическое исследование квантовая механика, квантовая теория поля, и квантовая статистическая механика добился результатов в операторные алгебры. Попытка построить строгую математическую формулировку квантовая теория поля также добился определенного прогресса в таких областях, как теория представлений.

Выдающиеся математические физики

Перед Ньютоном

В первом десятилетии 16 века астроном-любитель Николай Коперник предложенный гелиоцентризм, и издал трактат о нем в 1543 году. Он сохранил Птолемеев Идея эпициклы, и просто стремился упростить астрономию, построив более простые наборы эпициклических орбит. Эпициклы состоят из кругов за кругами. Согласно с Аристотелевская физика, круг был совершенной формой движения и внутренним движением Аристотеля. пятый элемент- квинтэссенция или универсальная сущность, известная по-гречески как эфир для англичан чистый воздух— это была чистая субстанция за пределами подлунная сфера, и, таким образом, был чистым составом небесных существ. Немец Иоганн Кеплер [1571–1630], Тихо Брагепомощник, изменил орбиты Коперника, чтобы эллипсы, формализованные уравнениями Кеплера законы движения планет.

Рене Декарт принял принципы Галилея и разработал полную систему гелиоцентрической космологии, основанную на принципе вихревого движения, Декартова физика, широкое признание которого привело к упадку аристотелевской физики. Декарт стремился формализовать математические рассуждения в науке и разработал Декартовы координаты для геометрического нанесения локаций в трехмерном пространстве и отметки их движения во времени. [7]

Кристиан Гюйгенс был первым, кто передал математические исследования для описания ненаблюдаемых физических явлений, и по этой причине Гюйгенс считается первым физик-теоретик и основоположник математической физики. [8] [9]

Ньютоновский и постньютоновский

В начале 19 века математики из Франции, Германии и Англии внесли свой вклад в математическую физику. Французский Пьер-Симон Лаплас (1749–1827) внесли огромный вклад в математическую астрономия, теория потенциала. Симеон Дени Пуассон (1781–1840) работал в аналитическая механика и теория потенциала. В Германии, Карл Фридрих Гаусс (1777–1855) внесли ключевой вклад в теоретические основы электричество, магнетизм, механика, и динамика жидкостей. В Англии, Джордж Грин (1793-1841) опубликованы Очерк применения математического анализа к теориям электричества и магнетизма в 1828 году, который, помимо значительного вклада в математику, сделал ранний прогресс в создании математических основ электричества и магнетизма.

За пару десятилетий до публикации Ньютоном теории частиц света голландские Кристиан Гюйгенс (1629–1695) разработал волновую теорию света, опубликованную в 1690 году. К 1804 году Томас Янгэксперимент с двумя щелями выявил интерференционную картину, как если бы свет был волной, и, следовательно, волновая теория света Гюйгенса, а также вывод Гюйгенса, что световые волны были колебаниями светоносный эфир, был принят. Жан-Огюстен Френель смоделировано гипотетическое поведение эфира. Английский физик Майкл Фарадей ввел теоретическую концепцию поля, а не действия на расстоянии. Середина 19 века, шотландский Джеймс Клерк Максвелл (1831–1879) свел электричество и магнетизм к теории электромагнитного поля Максвелла, а другие сократили ее до четырех Уравнения Максвелла. Первоначально оптика была признана следствием [ требуется разъяснение ] Поле Максвелла. Позже радиация, а затем известная сегодня электромагнитный спектр были обнаружены также в результате [ требуется разъяснение ] это электромагнитное поле.

Английский физик Лорд Рэйли [1842–1919] работал над звук. Ирландцы Уильям Роуэн Гамильтон (1805–1865), Джордж Габриэль Стоукс (1819–1903) и Лорд Кельвин (1824–1907) произвел несколько крупных работ: Стокс был лидером в оптика и гидродинамика; Кельвин сделал существенные открытия в термодинамика; Гамильтон заметно поработал аналитическая механика, открыв новый мощный подход, известный в настоящее время как Гамильтонова механика. Очень важный вклад в этот подход принадлежит его немецкому коллеге математику. Карл Густав Якоби (1804–1851), в частности, имея в виду канонические преобразования. Немец Герман фон Гельмгольц (1821–1894) внесли существенный вклад в области электромагнетизм, волны, жидкости, и звук. В США новаторская работа Джозайя Уиллард Гиббс (1839–1903) стали основой для статистическая механика. Фундаментальные теоретические результаты в этой области были достигнуты немецкой Людвиг Больцманн (1844-1906). Вместе эти люди заложили основы теории электромагнетизма, гидродинамики и статистической механики.

Релятивистский

К 1880-м годам наметился выдающийся парадокс: наблюдатель в электромагнитном поле Максвелла измерял его примерно с постоянной скоростью, независимо от скорости наблюдателя относительно других объектов в электромагнитном поле. Таким образом, хотя скорость наблюдателя постоянно терялась [ требуется разъяснение ] относительно электромагнитного поля сохранялась относительно других объектов в электромагнитное поле. И пока нет нарушения Галилеевская инвариантность в рамках физических взаимодействий между объектами. Поскольку электромагнитное поле Максвелла моделировалось как колебания эфирфизики пришли к выводу, что движение в эфире привело к дрейф эфира, смещая электромагнитное поле, объясняя отсутствие скорости наблюдателя относительно него. В Преобразование Галилея был математическим процессом, использовавшимся для перевода позиций в одной системе координат в предсказания позиций в другой системе координат, и все они были нанесены на Декартовы координаты, но этот процесс был заменен на Преобразование Лоренцапо образцу голландской Хендрик Лоренц [1853–1928].

Однако в 1887 году экспериментаторы Майкельсон и Морли не смогли обнаружить дрейф эфира. Было высказано предположение, что движение в эфир также вызвал сокращение эфира, как это было смоделировано в Лоренцево сокращение. Была выдвинута гипотеза, что эфир, таким образом, поддерживал электромагнитное поле Максвелла в соответствии с принципом галилеевой инвариантности во всех отношениях. инерциальные системы отсчета, в то время как теория движения Ньютона была сохранена.

Квантовая

Источник

Почему математика хорошо описывает реальность?

Физическая математика что это
Поводом к переводу статьи стало то, что я искал книгу автора «The Outer Limits of Reason». Спиратить книгу я так и не смог, зато наткнулся на статью, которая в довольно сжатом виде показывает взгляд автора на проблему.

Вступление

Одна из самых интересных проблем философии науки — это связь математики и физической реальности. Почему математика так хорошо описывает происходящее во вселенной? Ведь многие области математики были сформированы без какого-либо участия физики, однако, как в итоге оказалось, они стали основой в описании некоторых физических законов. Как это можно объяснить?

Наиболее явно этот парадокс можно наблюдать в ситуациях, когда какие-то физические объекты были сначала открыты математически, а уже потом были найдены доказательства их физического существования. Наиболее известный пример — открытие Нептуна. Урбен Леверье сделал это открытие просто вычисляя орбиту Урана и исследуя расхождения предсказаний с реальной картиной. Другие примеры — предсказание Дираком о существовании позитронов и предположение Максвелла о том, что колебания в электрическом или магнитном поле должно порождать волны.

Ещё более удивительно, что некоторые области математики существовали задолго до того, как физики поняли, что они подходят для объяснения некоторых аспектов вселенной. Конические сечения, изучаемые ещё Аполлонием в древней Греции, были использованы Кеплером в начале 17 века для описания орбит планет. Комплексные числа были предложены за несколько веков до того, как физики стали использовать их для описания квантовой механики. Неевклидова геометрия было создана за десятилетия до теории относительности.

Почему математика так хорошо описывает природные явления? Почему из всех способов выражения мыслей, математика работает лучше всего? Почему, например, нельзя предсказать точную траекторию движения небесных тел на языке поэзии? Почему мы не можем выразить всю сложность периодической таблицы Менделеева музыкальным произведением? Почему медитация не сильно помогает в предсказании результата экспериментов квантовой механики?

Лауреат нобелевской премии Юджин Вигнер, в своей статье «The unreasonable effectiveness of mathematics in the natural sciences», также задается этими вопросами. Вигнер не дал нам каких-то определенных ответов, он писал, что «невероятная эффективность математики в естественных науках — это что-то мистическое и этому нет рационального объяснения».

Альберт Эйнштейн по этому поводу писал:

Как может математика, порождение человеческого разума, независимое от индивидуального опыта, быть таким подходящим способом описывать объекты в реальности? Может ли тогда человеческий разум силой мысли, не прибегая к опыту, постичь свойства вселенной? [Einstein]

Давайте внесем ясность. Проблема действительно встает, когда мы воспринимаем математику и физику как 2 разные, превосходно сформированные и объективные области. Если смотреть на ситуацию с этой стороны, то действительно непонятно почему эти две дисциплины так хорошо работают вместе. Почему открытые законы физики так хорошо описываются (уже открытой) математикой?

Этот вопрос обдумывался многими людьми, и они дали множество решений этой проблемы. Теологи, например, предложили Существо, которое строит законы природы, и при этом использует язык математики. Однако введение такого Существа только все усложняет. Платонисты (и их кузены натуралисты) верят в существование «мира идей», который содержит все математические объекты, формы, а так же Истину. Там же находятся и физические законы. Проблема с Платонистами в том, что они вводят ещё одну концепцию Платонического мира, и теперь мы должны объяснить отношение между тремя мирами (прим. переводчика. Я так и не понял зачем третий мир, но оставил как есть). Так же встает вопрос являются ли неидеальные теоремы идеальными формами (объектами мира идей). Как насчет опровергнутых физических законов?

Наиболее популярная версия решения поставленной проблемы эффективности математики заключается в том, что мы изучаем математику, наблюдая за физическим миром. Мы поняли некоторые свойства сложения и умножения считая овец и камни. Мы изучили геометрию, наблюдая за физическими формами. С этой точки зрения, неудивительно, что физика идет за математикой, ведь математика формируется при тщательном изучении физического мира. Главная проблема с этим решением заключается в том, что математика неплохо используется в областях, далеких от человеческого восприятия. Почему же спрятанный мир субатомных частиц так хорошо описывается математикой, изученной благодаря подсчетам овец и камней? почему специальная теория относительности, которая работает с объектами, двигающимися со скоростями близкими к скорости света, хорошо описывается математикой, которая сформирована наблюдением за объектами, двигающимися с нормальной скоростью?

В двух статьях (раз, два) Макр Зельцер и Я (Носон Яновски) сформулировали новый взгляд на природу математики (прим. переводчика. В целом в тех статьях написано то же, что и здесь, но куда более развернуто). Мы показали, что также, как и в физике, в математике огромную роль играет симметрия. Такой взгляд дает довольно оригинальное решение поставленной проблемы.

Что есть физика

Прежде чем рассматривать причину эффективности математики в физике, мы должны поговорить о том, что такое физические законы. Говорить, что физические законы описывают физические феномены, несколько несерьезно. Для начала можно сказать, что каждый закон описывает много явлений. Например закон гравитации говорит нам что будет, если я уроню свою ложку, также он описывает падение моей ложки завтра, или что будет если я уроню ложку через месяц на Сатурне. Законы описывают целый комплекс разных явлений. Можно зайти и с другой стороны. Одно физическое явление может наблюдаться совершенно по-разному. Кто-то скажет, что объект неподвижен, кто-то, что объект движется с постоянной скоростью. Физический закон должен описывать оба случая одинаково. Также, например, теория тяготения должна описывать мое наблюдение падающей ложки в двигающимся автомобиле, с моей точки зрения, с точки зрения моего друга, стоящего на дороге, с точки зрения парня, стоящего у него на голове, рядом с черной дырой и т.п.

Встает следующий вопрос: как классифицировать физические явления? Какие стоит группировать вместе и приписывать одному закону? Физики используют для этого понятие симметрии. В разговорной речи слово симметрия используют для физических объектов. Мы говорим, что комната симметрична, если левая её часть похожа на правую. Иными словами, если мы поменяем местами стороны, то комната будет выглядеть точно также. Физики немного расширили это определение и применяют его к физическим законам. Физический закон симметричен по отношению к преобразованию, если закон описывает преобразованный феномен таким же образом. Например, физические законы симметричны по пространству. То есть явление, наблюдаемое в Пизе, так же может наблюдаться в Принстоне. Физические законы также симметричны по времени, т.е. эксперимент, проведенный сегодня должен дать такие же результаты, как если бы его провели завтра. Ещё одна очевидная симметрия — ориентация в пространстве.

Существует множество других типов симметрий, которым должны соответствовать физические законы. Относительность по Галиею требует, чтобы физические законы движения оставались неизменными, независимо от того неподвижен объект, или двигается с постоянной скоростью. Специальная теория относительности утверждает, что законы движения должны оставаться прежними, даже если объект движется со скоростью, близкой к скорости света. Общая теория относительности говорит, что законы остаются прежними, даже если объект движется с ускорением.

Физики обобщали понятие симметрии по-разному: локальная симметрия, глобальная симметрия, непрерывная симметрия, дискретная симметрия и т.д. Виктор Стенджер объединил множество видов симметрии по тем, что мы называем инвариантность по отношению к наблюдателю (point of view invariance). Это означает, что законы физики должны оставаться неизменными, независимо от того, кто и как их наблюдает. Он показал как много областей современной физики (но не все) могут быть сведены к законам, удовлетворяющими инвариантности по отношению к наблюдателю. Это означает, что явления, относящиеся к одному феномену, связанны, несмотря на то, что они могут рассматриваться по-разному.

Понимание настоящей важности симметрии прошло с теорией относительности Эйнштейна. До него люди сначала открывали какой-то физический закон, а потом находили в нем свойство симметрии. Эйнштейн же использовал симметрию, чтобы найти закон. Он постулировал, что закон должен быть одинаков для неподвижного наблюдателя и для наблюдателя, двигающегося со скоростью, близкой к световой. С этим предположением, он описал уравнения специальной теории относительности. Это была революция в физике. Эйнштейн понял, что симметрия — определяющая характеристика законы природы. Не закон удовлетворяет симметрии, а симметрия порождает закон.

В 1918 году Эмми Нётер показала, что симметрия ещё более важное понятие в физике, чем думали до этого. Она доказала теорему, связывающую симметрии с законами сохранения. Теорема показала, что каждая симметрия порождает свой закон сохранения, и наоборот. Например инвариантность по смещению в пространстве порождает закон сохранения линейного импульса. Инвариантность по времени порождает закон сохранения энергии. Инвариантность по ориентации порождает закон сохранения углового момента. После этого физики стали искать новые виды симметрий, чтобы найти новые законы физики.

Таким образом мы определили что называть физическим законом. С этой точки зрения неудивительно, что эти законы кажутся нам объективными, вневременными, независимыми от человека. Так как они инвариантны по отношению к месту, времени, и взгляду на них человека, создается впечатление, что они существуют «где-то там». Однако на это можно посмотреть и по-другому. Вместо того, чтобы говорить, что мы смотрим на множество различных следствий из внешних законов, мы можем сказать, что человек выделил какие-то наблюдаемые физические явления, нашел в них что-то похожее и объединил их в закон. Мы замечаем только то, что воспринимаем, называем это законом и пропускаем все остальное. Мы не можем отказаться от человеческого фактора в понимании законов природы.

Прежде чем мы двинемся дальше, нужно упомянуть о одной симметрии, которая настолько очевидная, что о ней редко когда упоминают. Закон физики должен обладать симметрией по приложению (symmetry of applicability). То есть если закон работает с объектом одного типа, то он будет работать и с другим объектом такого же типа. Если закон верен для одной положительно заряженной частицы, двигающейся со скоростью, близкой к скорости света, то он будет работать и для другой положительно заряженной частицы, двигающейся со скоростью такого же порядка. С другой стороны, закон может не работать для макрообъектов с малой скоростью. Все похожие объекты связанны с одним законом. Нам понадобится этот вид симметрии, когда мы будем обсуждать связь математики с физикой.

Что есть математика

Давайте потратим немного времени на то, чтобы понять самую суть математики. Мы рассмотрим 3 примера.

Давным давно какой-то фермер обнаружил, что если ты возьмешь девять яблок и соединишь их с четырьмя яблоками, то в итоге ты получишь тринадцать яблок. Некоторое время спустя он обнаружил, что если девять апельсинов соединить с четырьмя апельсинами, то получится тринадцать апельсинов. Это означает, что если он обменяет каждое яблоко на апельсин, то количество фруктов останется неизменным. В какое-то время математики накопили достаточно опыта в подобных делах и вывели математическое выражение 9 + 4 = 13. Это маленькое выражение обобщает все возможные случаи таких комбинаций. То есть оно истинно для любых дискретных объектов, которые можно обменять на яблоки.

Более сложный пример. Одна из важнейших теорем алгебраической геометрии — теорема Гильберта о нулях (https://ru.wikipedia.org/wiki/Теорема_Гильберта_о_нулях ). Она заключается в том, что для каждого идеала J в полиномиальном кольце существует соответствующее алгебраическое множество V(J), а для каждого алгебраического множества S существует идеал I(S). Связь этих двух операций выражается как Физическая математика что это, где Физическая математика что это— радикал идеала. Если мы заменим одно алг. мн-во на другое, мы получим другой идеал. Если мы заменим один идеал на другой, мы получим другое алг. мн-во.

Одним из основных понятий алгебраической топологии является гомоморфизм Гуревича. Для каждого топологического пространства X и положительного k существует группа гомоморфизмов из k-гомотопичой группы в k-гомологичную группу. Физическая математика что это. Этот гомоморфизм обладает особым свойством. Если пространство X заменить на пространство Y, а Физическая математика что этозаменить на Физическая математика что это, то гомоморфизм будет другим Физическая математика что это. Как и в предыдущем примере, какой-то конкретный случай этого утверждения не имеет большого значения для математики. Но если мы собираем все случаи, то мы получаем теорему.

В этих трех примерах мы смотрели на изменение семантики математических выражений. Мы меняли апельсины на яблоки, мы меняли одну идею на другую, мы заменяли одно топологическое пространство на другое. Главное в этом то, что делая правильную замену, математическое утверждение остается верным. Мы утверждаем, что именно это свойство является основным свойством математики. Так что мы будем называть утверждение математическим, если мы можем изменить то, на что оно ссылается, и при этом утверждение останется верным.

Теперь к каждому математическому утверждению нам нужно будет приставить область применения. Когда математик говорит «для каждого целого n», «Возьмем пространство Хаусдорфа», или «пусть C — кокуммутативная, коассоциативная инволютивная коалгебра», он определяет область применения для своего утверждения. Если это утверждение правдиво для одного элемента из области применения, то оно правдиво для каждого (при условии правильного выбора этой самой области применения, прим. пер.).

Эта замена одного элемента на другое, может быть описана как одно из свойств симметрии. Мы называем это симметрия семантики. Мы утверждаем, что эта симметрия фундаментальна, как для математики, так и для физики. Таким же образом, как физики формулируют свои законы, математики формулируют свои математические утверждения, одновременно определяя в какой области применения утверждение сохраняет симметрию семантики (иными словами где это утверждение работает). Зайдем дальше и скажем, что математическое утверждение — утверждение, которое удовлетворяет симметрии семантики.

Если среди вас найдутся логики, то им понятие симметрии семантики будет вполне очевидно, ведь логическое высказывание истинно, если оно истинно для каждой интерпретации логической формулы. Здесь же мы говорим, что мат. утверждение верно, если оно верно для каждого элемента из области применения.

Кто-то может возразить, что такое определение математики слишком широкое и что утверждение, удовлетворяющее симметрии семантики — просто утверждение, не обязательно математическое. Мы ответим, что во-первых, математика в принципе достаточно широка. Математика — это не только разговоры о числах, она о формах, высказываниях, множествах, категориях, микросостояниях, макросостояниях, свойствах и т.п. Чтобы все эти объекты были математическими, определение математики должно быть широким. Во-вторых, существует множество утверждений, не удовлетворяющих симметрии семантики. «В Нью-Йорке в январе холодно», «Цветы бывают только красными и зелеными», «Политики — честные люди». Все эти утверждения не удовлетворяют симметрии семантики и, следоваиельно, не математические. Если есть контрпример из области применения, то утверждение автоматически перестает быть математическим.

Математические утверждения удовлетворяют также и другим симметриям, например симметрии синтаксиса. Это означает, что одни и те же математические объекты могут быть представлены по-разному. Например число 6 может быть представлено как «2 * 3», или «2 + 2 + 2», или «54/9». Также мы можем говорить о «непрерывной самонепересекающийся кривой», о «простой замкнутой кривой», о «жордановой кривой», и мы будем иметь в виду одно и то же. На практике математики пытаются использовать наиболее простой синтаксис (6 вместо 5+2-1).

Некоторые симметрические свойства математики кажутся настолько очевидными, что о них вообще не говорят. Например математическая истина инвариантна по отношению ко времени и пространству. Если утверждение истинно, то оно будет истинно также завтра в другой части земного шара. Причем неважно, кто его произнесет — мать Тереза или Альберт Эйнштейн, и на каком языке.

Так как математика удовлетворяет всем этим типам симметрии, легко понять почему нам кажется, что математика (как и физика) объективна, работает вне времени и независима от наблюдений человека. Когда математические формулы начинают работать для совершенно разных задач, открытых независимо, иногда в разных веках, начинает казаться, что математика существует «где-то там». Однако, симметрия семантики (а это именно то, что происходит) — это фундаментальная часть математики, определяющая её. Вместо того, чтобы сказать, что существует одна математическая истина и мы лишь нашли несколько её случаев, мы скажем, что существует множество случаев математических фактов и человеческий разум объединил их вместе, создав математическое утверждение.

Почему математика хороша в описании физики?

Ну что, теперь мы можем задаться вопросов почему математика так хорошо описывает физику. Давайте взглянем на 3 физических закона.

В каждом из трех приведенных примеров физические законы естественно выражаются только через математические формулы. Все физические явления, которые мы хотим описать, находятся внутри математического выражения (точнее в частных случаях этого выражения). В терминах симметрий мы говорим, что физическая симметрия применимости — частный случай математической симметрии семантики. Более точно, из симметрии применимости следует, что мы можем заменить один объект на другой (того же класса). Значит математическое выражение, которое описывает явление, должно обладать таким же свойством (то есть его область применения должна быть хотя бы не меньше).

Иными словами, мы хотим сказать, что математика так хорошо работает в описании физических явлений, потому-что физика с математикой формировались одинаковым образом. Законы физики не находятся в платоновом мире и не являются центральными идеями в математике. И физики, и математики выбирают свои утверждения таким образом, чтобы они подходили ко многим контекстам. В этом нет ничего странного, что абстрактные законы физики берут свое начало в абстрактном языке математики. Как и в том, что некоторые математические утверждения сформулированы задолго до того, как были открыты соответствующие законы физики, ведь они подчиняются одним симметриям.

Теперь мы полностью решили загадку эффективности математики. Хотя, конечно, есть ещё множество вопросов, на которые нет ответов. Например, мы можем спросить почему у людей вообще есть физика и математика. Почему мы способны замечать симметрии вокруг нас? Частично ответ на этот вопрос в том, что быть живым — значит проявлять свойство гомеостазиса, поэтому живые существа должны защищаться. Чем лучше они понимают своё окружение, тем лучше они выживают. Неживые объекты, например камни и палки, никак не взаимодействуют со своим окружением. Растения же, с другой стороны, поворачиваются к солнцу, а их корни тянутся к воде. Более сложное животное может замечать больше вещей в своем окружении. Люди замечают вокруг себя множество закономерностей. Шимпанзе или, например, дельфины не могут этого. Закономерности наших мыслей мы называем математикой. Некоторые из этих закономерностей являются закономерностями физических явлений вокруг нас, и мы называем эти закономерности физикой.

Можно задаться вопросом почему в физических явлениях вообще есть какие-то закономерности? Почему эксперимент проведенный в Москве даст такие же результаты, если его провести в Санкт-Петербурге? Почему отпущенный мячик будет падать с одинаковой скоростью, несмотря на то, что его отпустили в другое время? Почему химическая реакция будет протекать одинаково, даже если на неё смотрят разные люди? Чтобы ответить на эти вопросы мы можем обратиться к антропному принципу. Если бы во вселенной не было каких-то закономерностей, то нас бы не существовало. Жизнь пользуется тем фактом, что у природы есть какие-то предсказуемые явления. Если бы вселенная была полностью случайна, или похожа на какую-то психоделическую картину, то никакая жизнь, по крайней мере интеллектуальная жизнь, не смогла бы выжить. Антропный принцип, вообще говоря, не решает поставленную проблему. Вопросы типа «Почему существует вселенная», «Почему есть что-то» и «Что тут вообще происходит» пока остаются без ответа.

Несмотря на то, что мы не ответили на все вопросы, мы показали, что наличие структуры в наблюдаемой вселенной вполне естественно описывается на языке математики.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *