Фильтрация портов что это

Электронная библиотека

Фильтрующий маршрутизатор представляет собой маршрутизатор или работающую на сервере программу, сконфигурированные таким образом, чтобы фильтровать входящие и исходящие пакеты. Фильтрация пакетов осуществляется на основе информации, содержащейся в TCP- и IP-заголовках пакетов.

Фильтрующий маршрутизатор обычно может фильтровать IP-пакеты на основе группы следующих полей заголовка пакета:

· IP-адреса отправителя (адреса системы, которая послала пакет);

· IP-адреса получателя (адреса системы, которая принимает пакет);

· порта отправителя (порта соединения в системе-отправителе);

· порта получателя (порта соединения в системе-получателе).

Порт – это программное понятие, которое используется клиентом или сервером для посылки или приема сообщений. Идентифицируется 16-битовым числом.

В настоящее время не все фильтрующие маршрутизаторы фильтруют пакеты по TCP/UDP-порту отправителя, однако многие производители маршрутизаторов начали обеспечивать такую возможность. Некоторые маршрутизаторы проверяют, с какого сетевого интерфейса маршрутизатора пришел пакет, и затем используют эту информацию как дополнительный критерий фильтрации.

Фильтрация может быть реализована различными способами для блокирования соединений с определенными компьютерами или портами. Например, можно блокировать соединения, идущие от конкретных адресов тех компьютеров и сетей, которые считаются враждебными или ненадежными.

Добавление фильтрации по портам TCP и UDP к фильтрации по IP-адресам обеспечивает большую гибкость. Известно, что такие серверы, как Telnet, обычно связаны с конкретными портами (например, порт 23 протокола Telnet). Если межсетевой экран способен блокировать соединения TCP или UDP с определенными портами или от них, то можно реализовать политику безопасности, при которой некоторые виды соединений устанавливаются лишь с конкретными компьютерами.

Например, внутренняя сеть может блокировать все входные соединения со всеми компьютерами за исключением нескольких систем. Для этих систем могут быть разрешены только определенные сервисы (SMTP для одной системы и Telnet или FTP – для другой). При фильтрации по портам TCP и UDP подобная политика может быть реализована фильтрующим маршрутизатором или компьютером с возможностью фильтрации пакетов (рис. 11.1).

В качестве примера работы фильтрующего маршрутизатора рассмотрим реализацию политики безопасности, допускающей определенные соединения с внутренней сетью с адресом 123.4.*.*.

Соединения Telnet разрешаются только с одним компьютером с адресом 123.4.5.6, который может быть прикладным Telnet-шлюзом, а SMTP-соединения – только с двумя компьютерами с адресами 123.4.5.7 и 123.4.5.8, которые могут быть двумя шлюзами электронной почты.

Обмен по NNTP (Network News Transfer Protocol) разрешается только от сервера новостей с адресом 129.6.48.254 и только с NNTP-сервером сети с адресом 123.4.5.9, а протокол NTP (сетевого времени) – для всех компьютеров.

Все другие серверы и пакеты блокируются.

Соответствующий набор правил сведен в табл. 11.1.

Первое правило (табл.

Фильтрация портов что это

11.1) позволяет пропускать пакеты TCP из сети Internet от любого источника с номером порта большим, чем 1023, к получателю с адресом 123.4.5.6 в порт 23. Порт 23 связан с сервером Telnet, а все клиенты Telnet должны иметь непривилегированные порты с номерами не ниже 1024.

Второе и третье правила работают аналогично и разрешают передачу пакетов к получателям с адресами 123.4.5.7 и 123.4.5.8 в порт 25, используемый SMTP.

Четвертое правило пропускает пакеты к NNTP-серверу сети, но только от отправителя с адресом 129.6.48.254 к получателю с адресом 123.4.5.9 с портом назначения 119 (129.6.48.254 – единственный NNTP-сервер, от которого внутренняя сеть получает новости, поэтому доступ к сети для выполнения протокола NNTP ограничен только этой системой).

Пятое правило разрешает трафик NTP, который использует протокол UDP вместо TCP, от любого источника к любому получателю внутренней сети.

Наконец, шестое правило блокирует все остальные пакеты. Если бы этого правила не было, маршрутизатор мог бы блокировать или не блокировать другие типы пакетов.

Это был рассмотрен очень простой пример фильтрации пакетов. Реально используемые правила позволяют осуществить сложную фильтрацию и являются более гибкими.

Правила фильтрации пакетов формулируются сложно, и обычно отсутствуют средства для проверки их корректности, кроме медленного ручного тестирования. У некоторых фильтрующих маршрутизаторов нет средств протоколирования, поэтому, если правила фильтрации пакетов все-таки позволят опасным пакетам пройти через маршрутизатор, такие пакеты не смогут быть выявлены до обнаружения последствий проникновения.

Даже если администратору сети удастся создать эффективные правила фильтрации, их возможности остаются ограниченными. Например, администратор задает правило, в соответствии с которым маршрутизатор будет отбраковывать все пакеты с неизвестным адресом отправителя. Однако хакер может использовать в качестве адреса отправителя в своем «вредоносном» пакете реальный адрес доверенного (авторизованного) клиента. В этом случае фильтрующий маршрутизатор не сумеет отличить поддельный пакет от настоящего и пропустит его. Практика показывает, что подобный вид нападения, называемый подменой адреса, довольно широко распространен в сети Internet и часто оказывается эффективным.

Межсетевой экран с фильтрацией пакетов, работающий только на сетевом уровне эталонной модели взаимодействия открытых систем OSI-ISO, обычно проверяет информацию, содержащуюся только в IP-заголовках пакетов. Поэтому обмануть его несложно: хакер создает заголовок, который удовлетворяет разрешающим правилам фильтрации. Кроме заголовка пакета, никакая другая содержащаяся в нем информация межсетевыми экранами данной категории не проверяется.

К положительным качествам фильтрующих маршрутизаторов следует отнести:

· сравнительно невысокую стоимость;

· гибкость в определении правил фильтрации;

· небольшую задержку при прохождении пакетов.

Недостатками фильтрующих маршрутизаторов являются:

· внутренняя сеть видна (маршрутизируется) из сети Internet;

· правила фильтрации пакетов трудны в описании и требуют очень хороших знаний технологий TCP и UDP;

· при нарушении работоспособности межсетевого экрана с фильтрацией пакетов все компьютеры за ним становятся полностью незащищенными либо недоступными;

· аутентификацию с использованием IP-адреса можно обмануть путем подмены IP-адреса (атакующая система выдает себя за другую систему, используя ее IP-адрес);

· отсутствует аутентификация на пользовательском уровне.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Источник

Настройка фильтрации TCP/IP в Windows Server 2003

В этой статье описывается настройка фильтрации TCP/IP на Windows 2003 года.

Применяется к: Windows Server 2003
Исходный номер КБ: 816792

Сводка

Windows 2003 года поддерживают несколько методов управления входящий доступ. Один из самых простых и мощных методов управления входящий доступ — это использование функции фильтрации TCP/IP. Фильтрация TCP/IP доступна на Windows 2003 года.

Фильтрация TCP/IP помогает в обеспечении безопасности, так как работает в режиме ядра. Другие методы управления входящий доступ к компьютерам на Windows 2003 года, например с помощью фильтра политики IPSec и сервера маршрутизации и удаленного доступа, зависят от процессов в режиме пользователя или рабочих станций и серверов.

Вы можете на уровне схемы управления входящие доступы TCP/IP с помощью фильтрации TCP/IP с помощью фильтров IPSec и фильтрации пакетов маршрутов и удаленного доступа. Этот подход особенно полезен, если необходимо контролировать как входящий, так и исходящие TCP/IP-доступ, так как только безопасность TCP/IP контролирует только входящий доступ.

Фильтрация TCP/IP может фильтровать только входящий трафик и не может блокировать сообщения ICMP (Протокол сообщений управления Интернетом) независимо от параметров, настроенных в столбце Разрешить только протоколы IP или не разрешается ли разрешить протокол Internet Protocol 1. Используйте политики IPSec или фильтрацию пакетов, если вам нужно больше контролировать исходящие доступы.

Рекомендуется использовать мастер настройки электронной почты и подключения к Интернету на компьютерах на базе SBS 2003 с двумя сетевыми адаптерами, а затем включить параметр Брандмауэра, а затем открыть необходимые порты на внешнем сетевом адаптере. Дополнительные сведения о мастере настройки электронной почты и подключения к Интернету выберите Начните, а затем выберите справку и поддержку. В поле Поиск введите Настройка мастера электронной почты и подключения к Интернету, а затем выберите Начните поиск. Сведения о мастере настройки электронной почты и подключения к Интернету можно найти в списке результатов «Темы малого бизнеса».

Настройка безопасности TCP/IP в Windows Server 2003

Настройка безопасности TCP/IP:

Выберите Начните, указать панель управления, указать на сетевые подключения, а затем выберите локальное подключение области, которое необходимо настроить.

В диалоговом окне Состояние подключения выберите Свойства.

Выберите протокол Интернета (TCP/IP) и выберите свойства.

В диалоговом окне Свойства протокола Интернета (TCP/IP) выберите Расширенный.

Выберите Параметры.

В необязательных параметрах выберите фильтрацию TCP/IP, а затем выберите Свойства.

Щелкните, чтобы выбрать поле Включить TCP/IP Filtering (Все адаптеры).

При выборе этого контрольного окна вы включаете фильтрацию для всех адаптеров, но настраивайте фильтры отдельно для каждого адаптора. Те же фильтры применяются не для всех адаптеров.

В диалоговом окне фильтрации TCP/IP есть три раздела, в которых можно настроить фильтрацию для портов TCP, портов протокола пользовательских данных (UDP) и протоколов Интернета. Для каждого раздела настройте параметры безопасности, подходящие для компьютера.

При активации Allow All вы разрешаете все пакеты для трафика TCP или UDP. Разрешение позволяет разрешить только выбранный трафик TCP или UDP, добавив разрешенные порты. Чтобы указать порты, используйте кнопку Добавить. Чтобы заблокировать весь трафик UDP или TCP, выберите Только разрешение, но не добавляйте номера портов в столбце UDP Ports или столбце TCP Ports. Вы не можете заблокировать трафик UDP или TCP, выбрав разрешение только для протоколов IP и исключив протоколы IP 6 и 17.

Настройка безопасности TCP/IP в Windows сервера малого бизнеса 2003

Чтобы настроить фильтрацию TCP/IP, выполните следующие действия.

Для выполнения этой процедуры необходимо быть членом группы Администраторы или группы операторов конфигурации сети на локальном компьютере.

Выберите Начните, укайте панель управления, щелкните правой кнопкой мыши сетевые подключения, а затем выберите Открыть.

Щелкните правой кнопкой мыши сетевое подключение, в котором необходимо настроить управление входящие доступы, а затем выберите свойства.

В статье AdaptorName Connection Properties на вкладке General выберите протокол Интернета (TCP/IP) и выберите Свойства.

В диалоговом окне Свойства протокола Интернета (TCP/IP) выберите Расширенный.

Выберите вкладку Параметры.

Выберите фильтрацию TCP/IP, а затем выберите Свойства.

Щелкните, чтобы выбрать поле Включить TCP/IP Filtering (Все адаптеры).

При выборе этого контрольного окна включается фильтрация для всех адаптеров. Однако конфигурация фильтра должна быть завершена на каждом адаптере. При включенной фильтрации TCP/IP можно настроить каждый адаптер, выбрав параметр Allow All, или разрешить принимать входящие подключения только к определенным протоколам IP, портам TCP и портам UDP (Протокол пользовательских данных). Например, если включить TCP/IP-фильтрацию и настроить внешний сетевой адаптер для разрешения только порта 80, это позволяет внешнему сетевому адаптеру принимать только веб-трафик. Если внутренний сетевой адаптер также имеет включенную фильтрацию TCP/IP, но настроен с выбранным параметром Разрешить все, это позволяет неограниченное общение на внутреннем сетевом адаптере.

В TCP/IP Filtering существует три столбца со следующими метами:

В каждом столбце необходимо выбрать один из следующих вариантов:

Вы не можете блокировать сообщения ICMP, даже если вы выбираете Разрешение только в столбце Протоколы IP и не включаете IP-протокол 1.

Фильтрация TCP/IP может фильтровать только входящий трафик. Эта функция не влияет на исходящие потоки и порты ответов TCP, созданные для приемки ответов из исходящие запросы. Используйте политики IPSec или фильтрацию пакетов маршрутов и удаленного доступа, если требуется дополнительный контроль над исходящие доступы.

Если выбрать разрешение только в портах UDP, TCP Ports или столбце протоколов IP и списки будут оставлены пустыми, сетевой адаптер не сможет общаться ни с чем по сети, локально или в Интернете.

Ссылки

Дополнительные сведения о номерах портов TCP и UDP см. в записи реестра номеров номеров порта с именем службы и транспортным протоколом.

Источник

Секреты маршрутизаторов для небольших сетей

Фильтрация портов что эторедств для защиты от разного рода атак извне (то есть из Интернета) на локальную сеть разработано очень много, но все они имеют один серьезный недостаток: чтобы реализовать такого рода защиту, необходимо выделить ПК, на котором будет установлено и настроено специализированное ПО. Если речь идет о достаточно крупной сети, насчитывающей не менее сотни ПК, то такое решение вполне оправданно, в случае же небольших сетей класса SOHO выделять компьютер для организации защиты сети весьма накладно. Кроме того, необходимо помнить, что профессиональные пакеты, реализующие защиту сети, стоят довольно дорого, поэтому для сегмента SOHO, возможно, имеет смысл обратиться к альтернативным решениям. Речь идет о маршрутизаторах класса SOHO, которые называют также Интернет-серверами и Интернет-маршрутизаторами. В настоящее время на рынке представлено огромное количество подобных маршрутизаторов, отличающихся друг от друга функциональными возможностями и ценой. Для того чтобы сделать правильный выбор, нужно четко представлять себе возможности и функции современных маршрутизаторов.

Конструкция маршрутизатора

Фильтрация портов что этооскольку маршрутизаторы являются пограничными сетевыми устройствами, то есть устанавливаются на границе между двумя сетями или между локальной сетью и Интернетом, выполняя роль сетевого шлюза, то они должны иметь как минимум два порта (см. рисунок). К одному из этих портов подключается локальная сеть, и этот порт называется внутренним LAN-портом. Ко второму порту подключается внешняя сеть (Интернет), и этот порт называется внешним WAN-портом. Как правило, маршрутизаторы класса SOHO имеют один WAN-порт и несколько (от одного до четырех) внутренних LAN-портов, которые объединяются в коммутатор. В большинстве случаев WAN-порт коммутатора имеет интерфейс 10/100Base-TX, и к нему может подключаться xDSL-модем с соответствующим интерфейсом либо сетевой Ethernet-кабель.

В некоторых моделях маршрутизаторов, кроме WAN-порта, есть последовательный порт для подключения аналогового модема. Как правило, этот порт предназначен для создания резервного низкоскоростного соединения по коммутируемой линии с провайдером.

Учитывая широкое распространение беспроводных сетей, создан целый класс так называемых беспроводных маршрутизаторов. Эти устройства, кроме классического маршрутизатора с WAN- и LAN-портами, содержат интегрированную точку беспроводного доступа, поддерживающую протокол IEEE 802.11a/b/g. Беспроводной сегмент сети, которую позволяет организовать точка доступа, относится к внутренней сети с точки зрения маршрутизатора, и в этом смысле компьютеры, подключаемые к маршрутизатору беспроводным образом, ничем не отличаются от компьютеров сети, подключенных к LAN-порту.

Фильтрация портов что это

Типичная схема использования маршрутизатора класса SOHO

Любой маршрутизатор, как устройство сетевого уровня, имеет свой IP-адрес. Кроме того, IP-адрес есть и у его WAN-порта. К примеру, маршрутизатор может иметь следующий IP-адрес:

• маска подсети: 255.255.255.0.

При этом у его WAN-порта может быть такой адрес:

• маска подсети: 255.255.255.0.

Компьютеры, подключаемые к LAN-портам маршрутизатора, должны иметь IP-адрес той же подсети, что и сам маршрутизатор. Кроме того, в сетевых настройках этих ПК необходимо задать адрес шлюза по умолчанию, совпадающий с IP-адресом маршрутизатора. К примеру, в рассмотренном выше случае сетевые настройки ПК, подключаемого к LAN-порту, могут быть следующими:

• маска подсети: 255.255.255.0;

• шлюз по умолчанию: 192.168.1.254.

Устройство, подключаемое к WAN-порту со стороны внешней сети, должно иметь IP-адрес из той же подсети, что и WAN-порт маршрутизатора. В нашем случае это могут следующие сетевые настройки:

• маска подсети: 255.255.255.0.

В рассмотренном выше примере использовался так называемый статический способ задания IP-адреса (Static IP), который поддерживают все маршрутизаторы. Его следует применять для ознакомления с возможностями работы маршрутизатора или для его тестирования. Однако в реальных условиях чаще используется динамический (Dynamic IP) способ задания IP-адреса, когда маршрутизатор выступает в роли DHCP-клиента, автоматически получая IP-адрес, адрес шлюза по умолчанию и сервера DNS от провайдера (DHCP-сервера). Этот способ обеспечивает провайдеру достаточную гибкость при конфигурировании своей сети и поддерживается всеми провайдерами.

Брандмауэр (firewall)

Фильтрация портов что этооскольку маршрутизатор выполняет функцию шлюза между локальной сетью и Интернетом, было бы логично наделить его такой функцией, как защита внутренней сети от несанкционированного доступа. Поэтому практически все современные маршрутизаторы класса SOHO имеют встроенные аппаратные брандмауэры, называемые также сетевыми экранами, или firewall. Конечно, существуют брандмауэры и в виде отдельных аппаратных решений, но интеграция брандмауэра с маршрутизатором позволяет снизить совокупную стоимость оборудования.

Брандмауэры анализируют весь трафик между двумя сетями, соединяемыми посредством маршрутизатора, на предмет соответствия его определенным критериям. Если трафик отвечает заданным условиям, то брандмауэр пропускает его через себя (производит маршрутизацию). В противном случае, то есть если не соблюдены установленные критерии, трафик блокируется брандмауэром. Брандмауэры фильтруют как входящий, так и исходящий трафик, а также позволяют управлять доступом к определенным сетевым ресурсам или приложениям. Они могут фиксировать все попытки несанкционированного доступа к ресурсам локальной сети и выдавать предупреждения о попытках проникновения.

Брандмауэры способны осуществлять фильтрацию сетевых пакетов, основываясь на адресах отправителя и получателя и номерах портов, — данная функция называется адресной фильтрацией. Кроме того, брандмауэры могут фильтровать специфические типы сетевого трафика, например HTTP, ftp или telnet, а также способны фильтровать трафик, основываясь на анализе атрибутов сетевых пакетов.

Существуют две методологии функционирования брандмауэров: согласно первой брандмауэр пропускает через себя весь трафик, за исключением того, который отвечает определенным критериям; вторая заключается в том, что брандмауэр, наоборот, блокирует весь трафик, кроме соответствующего определенным критериям.

Возможности брандмауэров и степень их интеллектуальности зависят от того, на каком уровне эталонной модели OSI они функционируют. Чем выше уровень OSI, на основе которой построен брандмауэр, тем выше обеспечиваемый им уровень защиты.

Напомним, что модель OSI (Open System Interconnection) включает семь уровней сетевой архитектуры. Первый, самый нижний уровень — физический. За ним следуют канальный, сетевой, транспортный, сеансовый уровни, уровень представления и прикладной уровень, или уровень приложений.

Для того чтобы обеспечивать фильтрацию трафика, брандмауэр должен работать как минимум на третьем уровне модели OSI, то есть на сетевом уровне. На этом уровне происходит маршрутизация пакетов на основе преобразования MAC-адресов в сетевые адреса. С точки зрения протокола TCP/IP этот уровень соответствует уровню IP (Internet Protocol). Получая информацию сетевого уровня, брандмауэры способны определить адрес источника и получателя пакета и проверить, допустима ли передача трафика между данными адресатами. Однако информации сетевого уровня недостаточно для анализа содержимого пакета. Брандмауэры, функционирующие на транспортном уровне модели OSI, получают больше информации о пакетах и являются более интеллектуальными схемами защиты сетей. Если брандмауэры работают на уровне приложений, им доступна полная информация о сетевых пакетах, поэтому такие брандмауэры обеспечивают наиболее надежную сетевую защиту.

Профессиональные брандмауэры захватывают каждый входящий пакет, прежде чем он будет передан адресату и принят его операционной системой. Благодаря этому очень сложно получить контроль над компьютером, защищенным таким брандмауэром.

Все брандмауэры можно условно разделить на четыре категории в соответствии с теми уровнями модели OSI, на которых они работают:

• пакетный фильтр (packet filter);

• шлюз сеансового уровня (circuit-level gateway);

• шлюз прикладного уровня (application-level gateway);

• Stateful Packet Inspection.

Пакетные фильтры

Брандмауэры типа пакетных фильтров являются самыми простыми наименее интеллектуальными. Они работают на сетевом уровне модели OSI или на IP-уровне стека протоколов TCP/IP. Такие брандмауэры в обязательном порядке присутствуют в любом маршрутизаторе, поскольку все маршрутизаторы могут работать как минимум на третьем уровне модели OSI.

В пакетных фильтрах каждый пакет, прежде чем быть переданным, анализируется на предмет соответствия критериям передачи или блокировки передачи. В зависимости от пакета и сформированных критериев передачи брандмауэр может передать пакет, отвергнуть его или послать уведомление инициатору передачи. Критерии, или правила, передачи пакетов могут формироваться на основе IP-адресов источника и получателя, номеров портов источника и получателя и используемых протоколов.

Преимуществом пакетных фильтров является их низкая цена. Кроме того, они практически не влияют на скорость маршрутизации, то есть не оказывают негативного влияния на производительность маршрутизатора.

Шлюзы сеансового уровня

Шлюзы сеансового уровня — это брандмауэры, работающие на сеансовом уровне модели OSI или на уровне TCP (Transport Control Protocol) стека протоколов TCP/IP. Они отслеживают процесс установления TCP-соединения (организацию сеансов обмена данными между узлами сети) и позволяют определить, является ли данный сеанс связи легитимным. Данные, передаваемые удаленному компьютеру во внешней сети через шлюз на сеансовом уровне, не содержат информации об источнике передачи, то есть все выглядит таким образом, как будто данные отправляются самим брандмауэром, а не компьютером во внутренней (защищаемой) сети. Все брандмауэры на основе NAT-протокола являются шлюзами сеансового уровня (протокол NAT будет описан далее).

К преимуществам шлюзов сеансового уровня относится их низкая цена, к тому же они не оказывают существенного влияния на скорость маршрутизации. Однако шлюзы сеансового уровня не способны осуществлять фильтрацию отдельных пакетов.

Шлюзы прикладного уровня

Шлюзы прикладного уровня, которые также называются proxy-серверами, функционируют на прикладном уровне модели OSI, отвечающем за доступ приложений в сеть. На этом уровне решаются такие задачи, как перенос файлов, обмен почтовыми сообщениями и управление сетью. Получая информацию о пакетах на прикладном уровне, такие шлюзы могут реализовывать блокировку доступа к определенным сервисам. Например, если шлюз прикладного уровня сконфигурирован как Web-proxy, то любой трафик, относящийся к протоколам telnet, ftp, gopher, будет заблокирован. Поскольку данные брандмауэры анализируют пакеты на прикладном уровне, они способны осуществлять фильтрацию специфических команд, например http:post, get и т.д. Эта функция недоступна ни пакетным фильтрам, ни шлюзам сеансового уровня. Шлюзы прикладного уровня могут также использоваться для регистрации активности отдельных пользователей и для установления ими сеансов связи. Эти брандмауэры предлагают более надежный способ защиты сетей по сравнению со шлюзами сеансового уровня и пакетными фильтрами, однако в значительно большей степени оказывают влияние на уменьшение скорости маршрутизации.

SPI-брандмауэры

Брандмауэы типа Stateful Packet Inspection (SPI) объединяют в себе преимущества пакетных фильтров, шлюзов сеансового уровня и шлюзов прикладного уровня. Фактически это многоуровневые брандмауэры, которые работают одновременно на сетевом, сеансовом и прикладном уровнях.

SPI-брандмауэры осуществляют фильтрацию пакетов на сетевом уровне, определяют легитимность установления сеанса связи, основываясь на данных сеансового уровня, и анализируют содержимое пакетов, используя данные прикладного уровня.

SPI-брандмауэры обеспечивают наиболее надежную защиту сетей и применяются во многих современных маршрутизаторах.

Протокол NAT

Фильтрация портов что этоольшинство современных маршрутизаторов поддерживают протокол NAT (Network Address Translation), базирующийся на сеансовом уровне и по сути представляющий собой протокол трансляции сетевых адресов. NAT позволяет реализовать множественный доступ компьютеров локальной (частной) сети (каждый из которых имеет собственный внутренний IP-адрес) в Интернет, используя всего один внешний IP-адрес WAN-порта маршрутизатора. При этом все компьютеры во внутренней локальной сети становятся невидимыми извне, но для каждого из них внешняя сеть является доступной. Протокол NAT пропускает в сеть только те данные из Интернета, которые поступили в результате запроса от компьютера из локальной сети.

Протокол NAT решает две главные задачи:

• помогает справиться с дефицитом IP-адресов, который становится все более острым по мере роста количества компьютеров;

• обеспечивает безопасность внутренней сети — компьютеры локальной сети, защищенные маршрутизатором с активированным NAT-протоколом (устройством NAT), становятся недоступными из внешней сети.

Хотя протокол NAT не заменяет брандмауэр, он все же является важным элементом безопасности.

Принцип работы протокола NAT достаточно прост. Когда клиент внутренней сети устанавливает связь с сервером внешней сети, открывается сокет, определяемый IP-адресом источника, портом источника, IP-адресом назначения, портом назначения и сетевым протоколом. Когда приложение передает данные через этот сокет, то IP-адрес источника и порт источника вставляются в пакет в поля параметров источника. Поля параметров пункта назначения будут содержать IP-адрес сервера и портсервера.

Устройство NAT (маршрутизатор) перехватывает исходящий из внутренней сети пакет и заносит в свою внутреннюю таблицу сопоставления портов источника и получателя пакета, используя IP-адрес назначения, порт назначения, внешний IP-адрес устройства NAT, внешний порт, сетевой протокол, а также внутренние IP-адрес и порт клиента. Затем устройство NAT транслирует пакет, преобразуя в пакете поля источника: внутренние IP-адрес и порт клиента заменяются внешними IP-адресом и портом устройства NAT.

Преобразованный пакет пересылается по внешней сети и в итоге попадает на заданный сервер. Получив пакет, сервер будет направлять ответные пакеты на внешний IP-адрес и порт устройства NAT (маршрутизатора), указывая в полях источника свои собственные IP-адрес и порт.

Устройство NAT принимает эти пакеты от сервера и анализирует их содержимое на основе своей таблицы сопоставления портов. Если в таблице будет найдено сопоставление порта, для которого IP-адрес источника, порт источника, порт назначения и сетевой протокол из входящего пакета совпадают с IP-адресом удаленного узла, удаленным портом и сетевым протоколом, указанным в сопоставлении портов, то NAT выполнит обратное преобразование: заменит внешний IP-адрес и внешний порт в полях назначения пакета на IP-адрес и внутренний порт клиента внутренней сети. Однако если в таблице сопоставления портов не находится соответствия, то входящий пакет отвергается и соединение разрывается.

В некоторых маршрутизаторах возможно отключение NAT-протокола. Однако имеются модели, где NAT-протокол активирован и отключить его невозможно. При этом важно, чтобы маршрутизатор мог частично обойти ограничения NAT-протокола. Дело в том, что не все сетевые приложения пользуются протоколами, способными взаимодействовать с NAT. Поэтому все маршрутизаторы имеют функции, позволяющие наложить ограничения на использование протокола NAT. Сервер, устанавливаемый во внутренней сети и являющийся прозрачным для протокола NAT, называют виртуальным сервером (Virtual Server). Прозрачным для протокола NAT может быть не весь сервер, а лишь определенные приложения, запускаемые на нем. Для того чтобы реализовать виртуальный сервер во внутренней сети, на маршрутизаторе используется технология перенаправления портов.

Перенаправление портов (Port mapping)

Фильтрация портов что этоля того чтобы сделать доступными из внешней сети определенные приложения, запускаемые на сервере во внутренней сети (например, Web-сервер или ftp-сервер), в маршрутизаторе необходимо задать соответствие между портами, используемыми определенными приложениями, и IP-адресами тех виртуальных серверов внутренней сети, на которых эти приложения работают. В этом случае говорят о перенаправлении портов (Port mapping). В результате любой запрос из внешней сети на IP-адрес WAN-порта маршрутизатора (но не виртуального сервера) по указанному порту будет автоматически перенаправлен на указанный виртуальный сервер.

Существует несколько способов конфигурирования виртуального сервера. В простейшем случае задается статическое перенаправление портов, то есть IP-адрес виртуального сервера, разрешенный порт приложения на этом виртуальном сервере (Private Port) и порт запроса (Public Port). Если, к примеру, открыт доступ к Web-серверу (порт 80), расположенному во внутренней сети с IP-адресом 192.168.1.10, то при обращении из внешней сети по адресу 10.0.0.254 (адрес WAN-порта) по 80-му порту этот пакет будет перенаправлен маршрутизатором на Web-сервер. Если же происходит обращение по тому же адресу, но по 21-му порту, то такой пакет будет отвергнут маршрутизатором.

Маршрутизаторы позволяют создавать несколько статических перенаправлений портов. Так, на одном виртуальном сервере можно открыть сразу несколько портов или создать несколько виртуальных серверов с различными IP-адресами. Однако при статическом перенаправлении портов нельзя перенаправлять один порт на несколько IP-адресов, то есть порт может соответствовать только одному IP-адресу. Таким образом, невозможно, например, сконфигурировать несколько Web-серверов с разными IP-адресами — для этого придется менять порт Web-сервера по умолчанию и при обращении по 80-му порту в настройке маршрутизатора в качестве Private Port указывать измененный порт Web-сервера.

Большинство моделей маршрутизаторов позволяют также задавать статическое перенаправление группы портов, то есть ставить в соответствие IP-адресу виртуального сервера сразу группу портов. Такая возможность полезна в том случае, если необходимо обеспечить работу приложений, использующих большое количество портов, например игр или аудио/видеоконференций. Количество перенаправляемых групп портов в разных моделях маршрутизаторов различно, но, как правило, их не менее десяти.

Статическое перенаправление портов позволяет лишь отчасти решить проблему доступа из внешней сети к сервисам локальной сети, защищаемой NAT-устройством. Однако существует и обратная задача — обеспечить пользователям локальной сети доступ во внешнюю сеть через NAT-устройство. Дело в том, что некоторые приложения (например, Интернет-игры, видеоконференции, Интернет-телефония и другие, требующие одновременного установления множества сессий) не совместимы с NAT-технологией. Для того чтобы решить эту проблему, используется так называемое динамическое перенаправление портов, которое задается на уровне отдельных сетевых приложений.

В случае если маршрутизатор поддерживает данную функцию, необходимо задать номер внутреннего порта (или интервал портов), связанный с конкретным приложением (как правило, его обозначают Trigger Port), и номер внешнего порта (Public Port), который будет сопоставляться с внутренним портом.

При активации динамического перенаправления портов маршрутизатор следит за исходящим трафиком из внутренней сети и запоминает IP-адрес компьютера, от которого этот трафик исходит. При поступлении данных обратно в локальный сегмент включается перенаправление портов, и данные пропускаются внутрь. По завершении передачи перенаправление отключается, вследствие чего любой другой компьютер может создать новое перенаправление уже на свой IP-адрес.

Динамическое перенаправление портов используется в основном для служб, предусматривающих кратковременные запросы и передачу данных, поскольку если один компьютер применяет перенаправление данного порта, то другой в это же время перенаправление того же самого порта использовать не может. Если нужно настроить работу приложений, которым необходим постоянный поток данных и которые занимают порт на длительное время, то динамическое перенаправление помогает мало. Однако и в этом случае возможно решение проблемы, заключающееся в использовании демилитаризованной зоны.

DMZ-зона

Фильтрация портов что этоемилитаризованная зона (DMZ-зона) — это еще один способ перенаправления портов. Данную возможность предоставляет большинство современных маршрутизаторов. При размещении в зоне DMZ компьютера внутренней локальной сети он становится прозрачным для протокола NAT. Фактически это означает, что компьютер внутренней сети виртуально располагается до брандмауэра. Для ПК, находящегося в DMZ-зоне, осуществляется перенаправление всех портов на один внутренний IP-адрес, что позволяет организовать передачу данных из внешней сети во внутреннюю.

Если, к примеру, сервер с IP-адресом 192.168.1.10, находящийся во внутренней локальной сети, размещен в DMZ-зоне, а сама локальная сеть защищена NAT-устройством, то поступивший из внешней сети по адресу WAN-порта маршрутизатора запрос будет переадресован по любому порту на IP-адрес 192.168.1.10, то есть на адрес виртуального сервера в DMZ-зоне.

Методы аутентификации

Фильтрация портов что этонастоящее время существует множество технологий аутентификации пользователей, поддерживаемых маршрутизаторами. Впрочем, если говорить о коммутаторах класса SOHO, то наиболее распространенными методами аутентификации являются следующие:

• использование пароля и имени пользователя;

• использование протокола PPPoE.

Использование пароля и имени пользователя типично для коммутируемых соединений, когда маршрутизатор имеет дополнительный последовательный порт для подключения аналогового модема. В этом случае, как и при традиционной настройке удаленного соединения с применением аналогового модема, в маршрутизаторе при конфигурации последовательного порта указываются номер телефона провайдера, имя пользователя и пароль.

Использование аутентификации по MAC-адресу встречается довольно редко и подразумевает привязку соединения к MAC-адресу маршрутизатора. Смысл данной технологии достаточно прост: каждое сетевое устройство имеет свой уникальный MAC-адрес длиной 6 байт, или 12 шестнадцатеричных цифр. Подлинность пользователя проверяется провайдером с использованием запроса MAC-адреса маршрутизатора.

Аутентификация по MAC-адресу имеет один подводный камень: при подключении модема к новому маршрутизатору или к компьютеру соединение перестает работать. Для того чтобы этого не происходило, многие модели маршрутизаторов позволяют задавать внешний MAC-адрес.

Использование протокола PPPoE (Point-to-Point Protocol over Ethernet) для аутентификации пользователей поддерживается практически всеми моделями современных маршрутизаторов. Этот протокол является расширением протокола PPP, который был специально разработан для применения протокола TCP/IP в последовательных соединениях, к которым относятся коммутируемые соединения. Фактически, данный протокол предлагает механизм инкапсуляции TCP-пакетов для их передачи по последовательным соединениям. К примеру, протокол PPP используется для организации коммутируемого доступа в Интернет.

PPPoE (как и PPP) не является протоколом аутентификации в чистом виде, однако механизм аутентификации можно рассматривать в качестве составной части этого протокола. При аутентификации по протоколу PPPoE требуется указать имя и пароль.

DHCP-сервер

Фильтрация портов что этоюбой современный маршрутизатор не только может быть DHCP-клиентом, но и может иметь встроенный DHCP-сервер, что позволяет автоматически присваивать IP-адреса всем клиентам внутренней сети. В настройках DHCP-сервера, как правило, указываются начало и конец диапазона выделяемых IP-адресов. Кроме того, иногда в заданном диапазоне можно указать IP-адреса, которые не будут динамически присваиваться клиентам.

Виртуальные сети VPN

Фильтрация портов что этоольшинство маршрутизаторов в той или иной степени поддерживают возможность создания виртуальных частных сетей (Virtual Private Networking, VPN), что позволяет организовывать защищенное соединение с локальной (внутренней) сетью извне.

Для создания VPN-сетей, как правило, используются три протокола: сквозной туннельный протокол (Point-to-Point Tunneling Protocol, PPTP), протокол IPsec и туннельный протокол второго уровня (Layer 2 Tunneling Protocol, L2TP).

Сквозной туннельный протокол, созданный корпорацией Microsoft, никак не меняет протокол PPP, но предоставляет для него новое транспортное средство.

PPTP определяет протокол управления вызовами, который позволяет серверу управлять удаленным коммутируемым доступом через телефонные сети общего пользования (PSTN) или цифровые каналы (ISDN) либо инициализировать исходящие коммутируемые соединения. PPTP использует механизм общей маршрутной инкапсуляции (GRE) для передачи пакетов PPP, обеспечивая при этом контроль потоков и сетевых заторов. Безопасность данных в PPTP может обеспечиваться при помощи протокола IPsec.

Туннельный протокол второго уровня — это своего рода объединение протокола PPTP и протокола эстафетной передачи на втором уровне (Layer 2 Forwarding, L2F), разработанного компанией Cisco. Протокол L2F обеспечивает туннелирование протоколов канального уровня с использованием протоколов более высокого уровня, например IP.

Протоколы L2F и PPTP имеют сходную функциональность, поэтому компании Cisco и Microsoft решили совместно разработать единый стандартный протокол, который и получил название туннельного протокола второго уровня.

IPsec

IPsec — это протокол защиты сетевого трафика путем использования алгоритмов шифрования на IP-уровне. Данный протокол предусматривает два режима функционирования: транспортный и туннельный. В транспортном режиме протокол IPsec применяется к содержимому IP-пакетов, при этом их исходные заголовки остаются видимыми. Туннельный режим инкапсулирует исходные IP-пакеты в IPsec-пакеты с новыми заголовками IP и позволяет эффективно скрывать исходные IP-пакеты.

Режимы функционирования VPN

Существует два режима функционирования VPN: сквозной (Pass Through) и активный. В первом случае маршрутизатор без вмешательства передает входящий и исходящий VPN-трафики, пропуская через себя инкапсулированные пакеты данных без просмотра их содержимого. Если маршрутизатор поддерживает режим VPN Pass Through, то необходимо только настроить соединение на VPN-клиентах (компьютеры во внутренней сети) таким образом, чтобы клиенты из внутренней сети могли свободно подключаться к серверу VPN снаружи. Однако при совместном использовании NAT- и VPN-туннелей могут возникать проблемы.

В активном режиме маршрутизатор выступает в роли сервера и может устанавливать VPN-соединение с узлом локальной сети, с другими шлюзами и маршрутизаторами или же в обоих направлениях.

Заключение

Фильтрация портов что этоданной статье мы рассмотрели только самые распространенные функции современных маршрутизаторов класса SOHO. Многие модели маршрутизаторов поддерживают и другие функции, которые, несмотря на различные названия, имеют одни и те же назначения. К примеру, это могут быть возможность блокирования определенных URL, запрет отклика на сканирование командой Рing, перевод маршрутизатора в режим Stealth, при котором он становится невидимым из внешней сети, и многое другое.

При правильной настройке маршрутизатор вполне способен осуществлять надежную защиту внутренней сети. К тому же его применение экономически более выгодно, чем использование в качестве маршрутизатора ПК (если, конечно, учитывать цены необходимого ПО).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *