Фиброгенное действие что это
Воздействие сварочного аэрозоля на организм электросварщика (ручная дуговая сварка). Рекомендации по измерению. И. А. Борскивер (№4, 2016)
Член Совета НАЦОТ, эксперт СДСОТ
В статье рассматривается воздействие на организм электросварщика при ручной дуговой сварке таких вредных факторов сварочного производства, как повышенная запыленность и загазованность воздуха рабочей зоны, а также даны рекомендации по измерению вредных веществ сварочного аэрозоля.
Ключевые слова: сварочный аэрозоль, ручная дуговая сварка, твердая и газовая составляющие сварочного аэрозоля, предельно допустимые концентрации вредных веществ в воздухе рабочей зоны.
Exposure to welding fumes on the body electric welder (manual arc welding). recommendations for measurement
Member of NATsOT Board (National Association of Occupational Safety and Health Centers), SDSOT expert (Voluntary Certification Organizations, Professionals System)
It is shown the effect on the electric welder for manual arc welding of such hazards of welding production as increased dust and fumes in the air of the working area, as well as recommendations for the measurement of pollutants welding fumes.
Keywords: welding spray manual arc welding, solid and gaseous components of welding fumes, the maximum permissible concentra-tions of harmful substances in the air of the working area
Высокая температура сварочной дуги способствует интенсивному окислению и испарению металла, флюса, защитного газа, легирующих элементов. Окисляясь кислородом воздуха, эти пары образуют мелкодисперсную пыль, а возникающие при сварке и тепловой резке конвективные потоки уносят газы и пыль вверх, приводя к большой запыленности и загазованности производственных помещений.
Мелкодисперсная пыль или же твердая составляющая сварочного аэрозоля (ТССА) состоит из мельчайших частиц перенасыщенных паров металлов и других веществ, входящих в состав сварочных, присадочных, напыляемых материалов и основного металла, которые конденсируются за пределами зоны высокотемпературного нагрева.
Скорость витания частиц ГССА — не более 0,08 м/с, оседает она незначительно, поэтому распределение ее по высоте помещения в большинстве случаев равномерно, что чрезвычайно затрудняет борьбу с ней.
Основными компонентами пыли при сварке и резке сталей являются окислы железа, марганца и кремния (около 41, 18 и 6% соответственно). В пыли могут содержаться другие соединения легирующих элементов. Токсичные включения, входящие в состав сварочного аэрозоля, и вредные газы при их попадании в организм человека через дыхательные пути могут оказывать на него неблагоприятное воздействие и вызывать ряд профзаболеваний. Мелкие частицы пыли от 0,4 до 5 мкм (микрометр 1/1000 часть миллиметра), проникающие глубоко в дыхательные пути, представляют наибольшую опасность для здоровья, пылинки размером до 10 мкм и более задерживаются в бронхах, также вызывая их заболевания.
К наиболее вредным пылевым выделениям относятся окислы марганца.
Марганец забивает канальцы нервных клеток. Снижается проводимость нервного импульса, как следствие повышается утомляемость, сонливость, снижается быстрота реакции, работоспособность, появляются головокружение, депрессивные, подавленные состояния.
Марганец почти невозможно вывести из организма; очень тяжело диагностировать отравление марганцем, т.к. симптомы очень общие и присущи многим заболеваниям, чаще же всего человек просто не обращает на них внимания.
Двуокись кремния при длительном вдыхании может вызвать профессиональное заболевание легких — Силикоз (silicosis, от лат. silex кремень)— это болезнь, при которой в легких образуется инородная ткань, которая снижает способность легких перерабатывать кислород, наиболее распространенное и тяжело протекающий вид пневмокониоза. Характеризуется диффузным разрастанием в легких соединительной ткани и образованием характерных узелков. Силикоз вызывает риск заболеваний туберкулезом, бронхитом и эмфиземой легких.
Соединения хрома способны накапливаться в организме, вызывая головные боли, заболевания пищеварительных органов, малокровие.
Окись титана вызывает заболевания легких.
Кроме того, на организм неблагоприятно воздействуют соединения алюминия, вольфрама, железа, ванадия, цинка, меди, никеля и других элементов.
Биологические свойства электросварочной пыли анализируются в три основных гигиенических показателя вредности пыли: растворимость, задержка при дыхании легочной тканью и фагоцитоз.
Газовая составляющая сварочного аэрозоля (ГССА) представляет собой смесь газов, образующихся при термической диссоциации (распад молекул на несколько более простых частиц) газошлакообразующих компонентов этих материалов (СО, СО2, HF и др.) или же за счет фотохимического действия ультрафиолетового излучения дугового разряда (плазмы) на молекулы газов воздуха (NO, NO2, О3).
Газы ГССА способны адсорбироваться на поверхности твердых частиц, захватываться внутрь их скоплений. При этом локальные концентрации газов, адсорбированных на частицах ТССА, могут существенно превышать их концентрации непосредственно в ГССА
Вредные газообразные вещества, попадая в организм через дыхательные пути и пищеварительный тракт, вызывают иногда тяжелые поражения всего организма.
К наиболее вредным газам, выделяющимся при сварке и резке, относятся окислы азота (особенно азота диоксид).
Азота диоксид воздействует в основном на дыхательные пути и легкие, он раздражает дыхательные пути, в больших концентрациях вызывает отёк лёгких, а также вызывает изменения состава крови, в частности, уменьшает содержание в крови гемоглобина.
Углерод оксид (угарный газ) — бесцветный газ, имеет кисловатый вкус и запах; будучи тяжелее воздуха в 1,5 раза, уходит вниз из зоны дыхания, однако, накапливаясь в помещении, вытесняет кислород и при концентрации свыше 1 % приводит к раздражению дыхательных путей, вызывает сильную головную боль, слабость, головокружение, туман перед глазами, тошноту и рвоту, мышечная слабость потерю сознания.
Озон — газ, токсичный при вдыхании. Он раздражает слизистую оболочку глаз и дыхательных путей. Патологоанатомические исследования показали характерную картину отравления озоном: кровь не свертывается, легкие пронизаны множеством сливных кровоизлияний.
Фтористый водород (гидрофторид) обладает резким запахом, дымит на воздухе (вследствие образования с парами воды мелких капелек раствора) и сильно разъедает стенки дыхательных путей.
Вещество оказывает разъедающее действие на глаза, кожу и дыхательные пути. Вдыхание этого газа может вызвать отек легких. Вещество может оказывать действие на повышенный уровень кальция в крови, вызывая гипокальцемию, приводя к сердечной и почечной недостаточности.
Содержание вредных веществ сварочного аэрозоля в воздухе рабочей зоны на рабочих местах не должны превышать ПДК, указанным в ГН 2.2.5.1313-03 «Предельно допустимые концентрации(ПДК) вредных веществ в воздухе рабочей зоны», а наиболее вероятные вредные вещества, которые входят в состав сварочного аэрозоля в виде твердой (ТССА) и газовой (ГССА) составляющей сварочного аэрозоля приведены в МУ 4945-88 «Методические указания по определению вредных веществ в сварочном аэрозоле (твердая фаза и газы)»
Количество и состав сварочных аэрозолей зависят от вида сварки, химического состава сварочных материалов и свариваемых металлов, защитных покрытий, режимов сварки, состава защитных газов и газовых смесей.
Таблица 1. ПДК вредных веществ сварочного аэрозоля в воздухе рабочей зоны
ПДК в воздухе рабочей зоны * (м.р./с.с), мг/м 3
Преимущественное агрегатное состояние
Особенности действия на организм ****
Твердая составляющая сварочного аэрозоля (ТССА)
Алюминий, его сплавы, алюминия оксид (в том числе с примесью диоксида кремния) в виде аэрозоля конденсации
Борная кислота BH3O3
Бора оксид (диБор триоксид)
Ванадия (V) оксид (дым)
(диВанадий пентоксид, дым)
(диВанадий триоксид, пыль)
Железа оксид (диЖелезо триоксид)
Кадмий и его неорганические соединения
Кальция оксид (Кальций оксид +)
Кобальт металлический, кобальта оксид (Кобальт и его неорганические соединения +)
Кремния диоксид аморфный в смеси с оксидами марганца в виде аэрозоля конденсации с содержанием каждого из них более 10 %
Магния оксид (Магний оксид)
Марганец при его содержании в сварочном аэрозоле
Медь металлическая (Медь)
Молибден металлический (Молибден)
Никель металлический, его оксиды (в пересчете на никель) (Никель, никель оксиды, сульфиды и смеси соединений никеля (файнштеин,никелевый концентрат и агломерат,оборотная пыль очистных устройств) (по никелю)
Свинец и его неорганические соединения
Титан, титана диоксид
Фтористоводородной кислоты соли
а) хорошо растворимые
б) плохо растворимые
(диХром триоксид (по хрому (III))
Хрома (VI) оксид (Хром (IV) триоксид +)
Цинка оксид (Цинк оксид)
Цирконий металлический Циркония диоксид
Газовая составляющая сварочного аэрозоля (ГССА)
Фтористый водород (гидрофторид (в пересчете на фтор)
*в числителе – максимально разовая, в знаменателе – среднесменная ПДК, прочерк в числителе означает, что Норматив установлен в виде средней сменной ПДК. Если приведен один Норматив, то это означает, что он установлен как максимальная разовая ПДК.
В практике наиболее часто встречается сварка углеродистых и низколегированных конструкционных сталей общего назначения, для этого применяют электроды с различными видами покрытий:
рутиловыми, основу покрытия таких электродов составляют рутиловый концентрат (природный диоксид титана), к ним можно отнести такие марки электродов, как АНО-1, АНО-4, АНО-18, ОЗС-4, ОЗС-6, ОЗС-12, МР-3, РБК-5 и др.;
ильменитовыми, название это покрытие получило от минерала ильменита (FeO-Ti02), к ним можно отнести такие марки электродов как АНО-6, АНО-17, ОЗС-21, ОЗС 23 и др.;
кислыми, основу этого вида покрытия составляют оксиды железа, марганца и кремния, к ним можно отнести такие марки электродов как ОММ-5, СМ-5, ЦМ-7, МЭЗ-4 и др.;
целлюлозными, создается на основе органических соединений (до 50%) – целлюлозы, муки, крахмала, обеспечивающих газовую защиту. Для шлаковой защиты в небольшом количестве применяются рутиловый концентрат, мрамор, карбонаты, алюмосиликаты и другие. К ним можно отнести такие марки электродов, как ОЗС-3, ОЗС-4, ОЗС-12, ОЗС-21, ВЦС-4 и др.;
основными (фтористо-кальцевыми), шлаковую основу составляют минералы — в основном карбонаты кальция и магния (мрамор, магнезит, доломит), а также плавиковый шпат (CaF2). Поэтому они получили название фтористо-кальциевых покрытий. К ним можно отнести такие марки электродов как УОНИ-13, УОНИ-13/45, УОНИ-13/55, УОНИ-65 АНО-9, АНО-10.
При выполнении сварочных работ с применением электродов с перечисленными видами покрытий, в сварочном аэрозоле выделяются такие вредные вещества, как: марганец, диЖелезо триоксид, двуокись кремния, титана диоксид, углерод оксид, азота диоксид, озон, фтористый водород.
Для сварки легированных, высоколегированных, перлитных, атмосферокоррозионностойких и др. сталей, чугуна, бронзы, меди, латуни, никеля, применяются другие марки электродов, при этом выделяются элементы и соединения перечисленные в таблице 1. Подробней об этом приведено в приложении 6 МУ 4945-88.
Измерение вредных веществ сварочного аэрозоля производят в целях проведения специальной оценки условий труда, производственного или санитарного контроля. Измерения производят испытательные (измерительные) лаборатории, аккредитованные в установленном порядке, причем, измеряемые вредные вещества должны быть внесены в область аккредитации лаборатории.
Все основные нормативы, в т.ч. и ПДК рассчитаны на 8-ми часовую продолжительность рабочей смены.
Для ПДК некоторых веществ установлены две нормативные величины: максимально разовая и среднесменная предельно допустимые концентрации. Величина последней более точно отражает состояние воздушной среды на рабочем месте.
Определение среднесменной концентрации вредного вещества предполагает, что в условиях воздействия данного вещества с установленной концентрацией его содержания в воздухе рабочей зоны работник находится 100% времени рабочей смены, при этом учитывается и время воздействия на организм сварочного аэрозоля (время пребывания).
При определении среднесменной концентрации вредных веществ сварочного аэрозоля расчетным методом часто вызывает затруднение в определении времени выполнения сварочных работ (длительности этапа производственного процесса). Это обусловлено тем, что сварочные работы на многих предприятиях не носят стабильный характер, а операции не повторяются в течение рабочей смены ежедневно. В качестве примера к таким работам можно отнести электросварщиков в ремонтных подразделениях предприятии, бригадах трудоемких процессов сельхозпредприятий, в строительстве и т. п.
Время пребывания устанавливается приблизительно, приходится беседовать с сварщиком, бригадиром, мастером. При этом многие считают
Это ошибочное мнение, поскольку в данном случае не учитывается время на выполнение подготовительных, вспомогательных, текущих ремонтных работ, а также работ вне своего рабочего места в целях обеспечения выполнения своих трудовых функций.
Вспомогательные и работы по обслуживанию рабочего места – это текущий ремонт и обслуживание оборудования и приспособлений, поддержание рабочего места в санитарно гигиеническом, противопожарном и травмобезопасном состоянии, уход за инструментом и др. Такие работы могут составлять до 10% от рабочего времени.
Как определить время пребывания (время воздействия сварочного аэрозоля на организм сварщика)?
Есть мнение, что опытный сварщик расходует в час один килограмм электродов. В этом случае можно разделить общее количество электродов в килограммах на количество рабочих дней. Но данное мнение, на взгляд автора, не подходит для проведения измерений и оформления протоколов, поскольку расход электродов может зависеть от видов и способов сварки, диаметра и марки электродов, толщины свариваемых материалов, видов сварных соединений и швов и т.д.
Можно рассчитать расход электродов и время горения сварочной дуги расчетным способом. Для этого необходимо взять для расчетов наиболее часто применяемые электроды, свариваемые материалы, способы и режимы сварки:
где αн — коэффициент наплавки; Gн — масса наплавленного за время t металла, г (с учетом потерь).
Коэффициент наплавки зависит от рода и полярности тока, типа покрытия и состава проволоки, а также от пространственного положения, в котором выполняют сварку.
Коэффициент наплавки является одним из показателей характеристик электродов. Для электродов марки АОН-4, АНО-6, УОНИ-13 αн = 9-11 г/Ач Возьмем среднее значение 10
Основное время, to – время горения дуги можно вычислить по формуле:
to = Flγ/ Iαн, ч., где
F – площадь поперечного сечения наплавленного метала в см 2 ;
I – сварочный ток в а;
αн – коэффициент наплавки в г/а . ч
Площадь поперечного сечения, F, которая существенно зависит от сварного соединения, определяется геометрическим расчетом по ГОСТу 2564-80, как сумма площадей треугольников.
Длину шва, l для приведения к единице веса электродов необходимо вычислить из расчета расхода одного килограмма электродов.
На 1 кг. электродов: 1: 0,65 = 1.54 м. = 154 см. шва
Произведем расчет: to = 0,55*154*7,85: (176*10) = 0,378 час
Так как, длину шва приняли из расчета на 1 килограмм электродов, получается, что за 0,378 часа, в среднем, электросварщик расходует 1 кг электродов,
или за 1 час – 2,6 килограмм.
Время воздействия сварочного аэрозоля на организм сварщика в течение рабочего дня теперь можно вычислить по формуле:
Где: Pэл – количество электродов израсходованных электросварщиком в месяц
N – количество дней работы сварщика в течении месяца
1. МУ 4945–88 «Методические указания по определению вредных веществ в сварочном аэрозоле (твёрдая фаза и газы)».
2. ГОСТ 5264–80 (1993) Ручная дуговая сварка. Основные типы, конструктивные элементы и размеры.
3. Винокуров В. С. Оборудование и технология дуговой, автоматической и механизированной сварки. М.: Высшая школа, 2001.
4. Бабенко Э. Г., Казанова Н. П. Расчет режимов электрической сварки и наплавки: Методическое пособие. Хабаровск, 1999.
5. Фоминых В. П., Яковлев А. П. Ручная дуговая сварка. 7-е изд., испр. и доп. М.: Высшая школа, 1986.
ГОСТ Р 54578-2011 Воздух рабочей зоны. Аэрозоли преимущественно фиброгенного действия. Общие принципы гигиенического контроля и оценки воздействия
ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ
НАЦИОНАЛЬНЫЙ
стандарт
РОССИЙСКОЙ
ФЕДЕРАЦИИ
Воздух рабочей зоны
АЭРОЗОЛИ ПРЕИМУЩЕСТВЕННО
ФИБРОГЕННОГО ДЕЙСТВИЯ
Общие принципы гигиенического контроля
и оценки воздействия
Сведения о стандарте
1 РАЗРАБОТАН Учреждением Российской академии медицинских наук «Научно-исследовательский институт медицины труда РАМН» (НИИ МТ РАМН) и Учреждением Российской академии наук «Институт проблем комплексного освоения недр РАН» (ИПКОН РАН)
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 457 «Качество воздуха»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 1 декабря 2011 г. № 677-ст.
Вдыхание работником аэрозолей преимущественно фиброгенного действия (АПФД) является причиной ряда профессиональных заболеваний органов дыхания (пылевой бронхит, пневмокониозы, рак легких и др.). Все АПФД подразделяются на: высоко-, умеренно- и слабофиброгенные, что отражается в гигиеническом нормировании (через разные величины Ксс), учитывается при гигиеническом контроле и классификации условий труда по показателям вредности.
Биологическое действие АПФД, как и некоторых других аэрозолей, определяется общим содержанием частиц пыли (выраженным через массовую концентрацию, мг/м 3 ) в воздухе, размером твердых частиц, составляющих дисперсную фазу, и другими физико-химическими свойствами, а также длительностью воздействия. Положения, приведенные в настоящем стандарте, относятся к вдыхаемой фракции частиц (см. ГОСТ Р ИСО 7708).
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Воздух рабочей зоны
АЭРОЗОЛИ ПРЕИМУЩЕСТВЕННО ФИБРОГЕННОГО ДЕЙСТВИЯ
Общие принципы гигиенического контроля и оценки воздействия
Workplace air quality. Predominantly fibrogenic aerosols. General principles for hygienic regulation,
monitoring and evaluation
1 Область применения
Настоящий стандарт устанавливает общие принципы гигиенического контроля и оценки риска развития профзаболеваний в результате воздействия аэрозолей преимущественно фиброгенного действия (АПФД) на основе измерений массовой концентрации частиц пыли, содержащихся в воздухе рабочей зоны.
Эти общие принципы для разных видов деятельности следует учитывать при:
— обосновании гигиенических нормативов (Ксс и Кмр);
— оценке качества воздуха рабочей зоны;
— оценке риска воздействия АПФД (по уровню долговременных пылевых нагрузок и по относительному числу заболевших среди контингента работников, имеющих профессиональный контакт с АПФД);
— разработке требований к организации и проведению пылевого контроля;
— организации технологических процессов и совершенствовании оборудования, связанных с источниками возможного пылевыделения,
— выборе путей профилактики неблагоприятного воздействия АПФД;
— дальнейшем развитии методологии нормирования АПФД разных видов.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ Р ИСО 7708-2006 Качество воздуха. Определение гранулометрического состава частиц при санитарно-гигиеническом контроле
ГОСТ Р ИСО 15767-2007 Точность взвешивания аэрозольных проб
ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 аэрозоль преимущественно фиброгенного действия; АПФД: Аэрозоли, отличающиеся и обладающие (по характеру биологического воздействия) преимущественно фиброгенным типом действия.
2 В нормативных документах, устанавливающих гигиенические нормативы, этот вид аэрозолей помечают индексом «Ф».
3.2 аэрозоль: Сложная аэродисперсная система, состоящая из дисперсной фазы, представленной частицами твердого вещества или нескольких веществ, и дисперсионной среды, представленной воздухом и/или другой смесью газов или отдельным газом.
3.3 среднесменная концентрация Ксс, мг/м 3 : Массовая концентрация вредного вещества в воздухе рабочей зоны, усредненная за восьмичасовую рабочую смену.
2 Среднесменную концентрацию определяют по результатам непрерывного или дискретного отбора проб воздуха в зоне дыхания работников или рабочей зоне, позволяющего характеризовать содержание пыли в течение времени, составляющего не менее 75 % продолжительности рабочей смены, включая основные и вспомогательные технологические операции, а также перерывы в работе с учетом их длительности в течение смены.
3 Предельно допустимая среднесменная концентрация обозначается как ПДКСС.
3.4 максимальная разовая концентрация Кмр Максимальное содержание вредного вещества в воздухе рабочей зоны.
1 Максимальную разовую концентрацию определяют по результатам непрерывного или дискретного отбора проб аэрозоля в зоне дыхания работников или рабочей зоне при технологическом процессе, сопровождающемся максимальным пылевыделением, за любой промежуток времени продолжительностью не более 30 мин, достаточный для накопления на фильтре пыли в количестве, пригодном для достоверного определения массы.
2 Максимальная разовая концентрация наряду с другими выборочными характеристиками ПФ применяется для выявления характера формирования ПН на органы дыхания по наличию кратковременного, но значительного («пикового») превышения значений предельно допустимой концентрации (ПДК). Эти концентрации в случае АПФД не имеют самостоятельного определяющего значения при установлении связи отклонений в состоянии здоровья с ПФ.
3.5 разовая концентрация: Содержание вредного вещества в разовой пробе, отбираемой за любой фиксированный промежуток времени с целью определения максимально-разовых и среднесменных концентраций
3.6 пылевая нагрузка на органы дыхания работника; ПН: Реальное или прогностическое значение суммарной экспозиционной дозы пыли, определяемое на основе среднесменной концентрации пыли, которую вдыхает работник за весь период фактического или предполагаемого (прогностического) профессионального контакта с пылевым фактором.
3.7 контрольный уровень пылевой нагрузки; КПН: Значение пылевой нагрузки при допущении, что на всем протяжении периода профессионального контакта с пылью, определяемого сроком трудового соглашения либо сроком выхода на пенсию, среднесменная концентрация была равна предельно допустимой среднесменной концентрации.
1 КПН применяют для сравнения с ним и оценки реально полученной ПН.
2 Класс условий труда и степень их вредности при профессиональном контакте с АПФД устанавливают, исходя из кратности превышения КПН, с учетом фактических значений среднесменной концентрации АПФД и определяемых ими значений реальной ПН (см. таблицу 1).
3.8 гигиенический норматив: Установленное нормативным документом предельнодопустимое максимальное содержание вредных (загрязняющих) веществ в атмосферном воздухе, при котором отсутствует вредное воздействие на здоровье человека.
3.9 защита временем: Уменьшение вредного действия неблагоприятных факторов производственной среды и трудового процесса на работников за счет сокращения продолжительности их действия путем введения внутрисменных перерывов, сокращения рабочего дня, увеличения продолжительности отпуска, ограничения стажа работы в данных условиях, перемещения на другие работы.
4 Общие положения
Критерии, используемые для диагностики заболеваний, провоцируемых АПФД (определяемые на основе функциональных, рентгенологических, лабораторных, биохимических и других показателей), характеризуют воздействие всех вдыхаемых человеком частиц во всем диапазоне их дисперсности, поскольку каждая фракция АПФД, находящихся во вдыхаемом воздухе, обладает определенной биологической активностью и вносит свой вклад в развитие заболеваний от воспалительно-дистрофических нарушений до продуктивно-склеротических изменений в зависимости от длительности воздействия.
5 Гигиенический контроль аэрозолей преимущественно фиброгенного действия
Предельно допустимые концентрации на известные АПФД приведены в нормативных документах, устанавливающих гигиенические нормативы (см. [1] и ГОСТ 12.1.005). При проектировании производственных зданий, технологических процессов, оборудования, вентиляции должны быть учтены ПДК. Это обеспечивает безопасность производственной среды и профилактику неблагоприятного воздействия АПФД на здоровье работников.
В реальных производственных условиях при контроле уровня содержания АПФД в воздухе рабочей зоны учитывают все колебания содержания АПФД в течение рабочей смены. При превышении ПДКСС необходим расчет общей пылевой нагрузки на работника, включающий в себя учет колебаний Ксс на протяжении всего периода профессионального контакта с АПФД. Пылевую нагрузку ПН (в граммах) на органы дыхания работника (индивидуальную или для группы работников, если они выполняют аналогичную работу в одинаковых условиях) вычисляют по формуле
— 10 м 3 для тяжелых работ (категория III).
Полученное значение ПН сравнивают со значением КПН, вычисляемым по формуле
По результатам сравнения фактической пылевой нагрузки с контрольным уровнем условия труда относят либо к допустимому безопасному, либо к вредному классу условий труда (см. таблицу 1) и в соответствии с этим определяют возможность продолжения работы в надлежащих условиях, обеспечивающих полную безопасность или требующих использования мер профилактики и установленных законодательством компенсаций за работу во вредных условиях труда.
Кратность превышения контрольных пылевых нагрузок указывает на класс вредности условий труда по данному фактору (см. таблицу 1).
При превышении контрольных пылевых нагрузок рекомендуется использовать принцип защиты временем.
Учет пылевой нагрузки и ее сравнение с КПН способствуют выбору путей профилактики, а также обеспечивают возможность расчета компенсаций за работу в неблагоприятных условиях, определения очередности профилактических мероприятий и ликвидации профессиональных заболеваний органов дыхания пылевой этиологии.
6 Оценка риска воздействия аэрозолей преимущественно фиброгенного действия
Регулярные измерения разовой концентрации пыли (см. [3], [4]) проводят для получения распределения значений содержания пыли в воздухе рабочей зоны (подчиняющегося, как правило, не нормальному, а логнормальному закону [4]), в соответствии с которым определяют следующие характеристики пылевого фактора:
— минимальное и максимальное значения разовой концентрации пыли в выборке, характеризующих ее «размах»;
— выборочную медиану Me распределения значений разовой концентрации пыли, полученных в течение восьмичасовой рабочей смены, делящей его на две равные половины (каждая из которых включает 50 % значений).
— выборочное стандартное геометрическое отклонение s g (дает количественную характеристику разброса значений разовых концентраций в выборке и степени организованности технологического процесса);
— среднесменную концентрацию Ксс (определяемую как среднегеометрическое по выборке). Указанные параметры вычисляют с использованием соответствующих формул для логарифмического нормального распределения (см. [5]).
По вышеприведенным формулам (1) и (2) рассчитывают уровни фактических и контрольных индивидуальных и/или коллективных пылевых нагрузок (расчет фактических ПН обязателен при превышении Ксс и необходим для доказательства связи заболевания с профессиональной деятельностью и одновременного сравнения с КПН, характеризующим предельно допустимый уровень воздействия конкретного вида АПФД).
Полученные значения характеристик следует сохранять в базе данных не менее 50 лет для формирования выборочных характеристик пылевого фактора и оценки степени его воздействия на работников (в случае необходимости проведения судебно-медицинской экспертизы).
6.2 Требования к методам и средствам измерений
6.2.1 Общие положения
В настоящем подразделе установлены требования к методам и средствам измерений, которые следует соблюдать при получении оценок характеристик, указанных в 6.1.
Методы измерений массовой концентрации пыли делятся на прямые (весовой или гравиметрический метод), и косвенные (измерения с помощью пылемеров).
Измерения должны проводиться по аттестованной методике измерений с учетом положений настоящего стандарта и специфики конкретного производства.
6.2.2 Гравиметрический метод
Весовой или гравиметрический метод определения массы частиц пыли, отобранных на фильтр пылеотборника (пылеотборника), является основным прямым методом измерений, при котором взвешиванием определяется масса частиц, а по результатам измерений расхода воздуха и продолжительности отбора пробы определяется ее объем.
Для определения массы частиц пыли их собирают на фильтр, установленный в пробоотборнике, просасывая через него рассчитанный объем воздуха с помощью побудителя расхода (аспиратора). В зависимости от цели измерений пробу частиц пыли отбирают с помощью индивидуального или стационарного пробоотборного устройства (например, см. [ 6 ]).
Для проведения отбора проб применяют следующее оборудование:
— фильтры подходящего диаметра для использования в фильтродержателях;
— побудитель расхода, обеспечивающий постоянный расход воздуха с отклонением ± 5 % номинального значения (в некоторых случаях может быть встроенным в портативный индивидуальный пробоотборник);
— портативный расходомер с погрешностью не более ± 5 %;
— термометр для измерения температуры в соответствующем диапазоне температур воздуха рабочей зоны, ценой деления не более 1 °С (при необходимости);
— барометр для измерения атмосферного давления (при необходимости);
— часы или таймер для определения продолжительности отбора проб;
— вспомогательные приспособления (такие как гибкие резиновые шланги, ремни для крепления индивидуальных пробоотборников, пинцеты с плоскими губками для обращения с фильтрами, контейнеры для транспортирования фильтров и т. д.).
При отборе проб учитывают следующие условия:
— отбор частиц пыли в воздухе рабочей зоны должен производиться в направлении потока вдыхаемого воздуха с расположением фильтродержателя навстречу потоку. При отборе частиц пыли из спокойного воздуха фильтродержатель должен быть обращен в сторону источника пыли;
— линейная скорость потока воздуха на входе в пробоотборный канал (фильтродержатель) должна быть в пределах от 1,0 до 1,2 м/с (обеспечивается применением насадок к фильтродержателям). Падение объемного расхода воздуха через фильтр при отборе проб должно быть не более 10 %;
— рекомендуемый объемный расход воздуха, прокачиваемого через фильтр, должен быть в пределах от 20 до 70 дм 3 /мин. При применении фильтров АФА номинальные диаметры входных отверстий насадок к фильтродержателям должны быть 17, 21, 24, 27 и 31 мм при объемном расходе воздуха через фильтр соответственно 20, 30, 40, 50 и 70 дм 3 /мин;
— масса пыли на одном квадратном сантиметре фильтра типа АФА не должна превышать 4 мг, т. е. максимально допустимая масса пыли не должна превышать 40 мг на фильтре АФА-ВП10 и 80 мг на фильтре АФА-ВП20;
— в пылеотборниках должна быть предусмотрена индикация массы пыли на фильтре каким-либо косвенным методом, например оптическим или депремометрическим;
— конструкция индивидуального пылеотборника должна быть неразборной для посторонних лиц: пуск и остановка должны осуществляться специальным «ключом».
Диапазон расхода пылеотборника должен обеспечивать возможность настройки расхода воздуха таким образом, чтобы за 8 ч работы на фильтре оседала пыль массой, достаточной для ее определения с погрешностью не более 16 % (1,3 мг при погрешности взвешивания, равной 0,1 мг).
Общие рекомендации по взвешиванию проб аэрозолей и оценке точности измерений, связанной с процедурой взвешивания, приведены в ГОСТ Р ИСО 15767.
— одинаковыми, при этом максимальные значения относительных погрешностей взвешивания чистого фильтра, фильтра с пылью и объема прокачанного воздуха будут равны по 8 % 1) ;
1) Относительная погрешность определения продолжительности отбора пробы составляет не более 1 %.
Минимальная масса пыли на фильтре определяется абсолютной погрешностью взвешивания (производится дважды) и требуемой относительной погрешностью определения массы пыли. При абсолютной погрешности взвешивания 0,1 мг и относительной погрешности определения массы пыли на фильтре не более 16 % масса пыли на фильтре должна быть не менее 1,3 мг.
Результат измерений приводят к стандартным условиям: температура 293 К (20 °С), давление 101,3 кПа (760 мм рт. ст.), относительная влажность 50 % (для этого при отборе проб следует регистрировать температуру окружающего воздуха, барометрическое давление, влажность и скорость движения воздуха, а на открытых площадках и направление потока воздуха), см. ГОСТ 12.1.005 (пункт 5.5.) и [4].
6.2.3 Измерение массовой концентрации пыли с помощью пылемеров
Косвенные методы измерений массовой концентрации пыли (пылемеры), основаны на зависимости какого-либо физического свойства частиц пыли (способности поглощать или рассеивать свет, нести электронный заряд и т. д.) от ее массы.
В зависимости от изменчивости свойств пыли (особенно дисперсного состава) связь массовой концентрации частиц с характеристикой измеряемого сигнала (светового или электрического), идущего от частиц, может быть неустойчивой и значительно влиять на погрешность метода.
Использование автоматических пылемеров непрерывного действия расширяет возможности мониторинга содержания пыли в воздухе рабочей зоны, на рабочих местах или в представительных точках с передачей информации для сохранения в соответствующей базе данных.
6.2.4 Погрешность измерения массовой концентрации пыли
Все методы и средства измерений запыленности воздуха должны обеспечивать определение массовой концентрации пыли с размером частиц от 0,5 до 70 мкм в воздухе в диапазоне от 1 до 10 ПДК с основной относительной погрешностью, не превышающей 25 % при доверительной вероятности 0,95. При концентрации более 10 ПДК погрешность не нормируется. При массовой концентрации пыли менее 1 ПДК допускается большая погрешность измерения, определяемая по формуле
6.3 Процедура оценки риска воздействия
Вероятность развития профессионального заболевания пылевой этиологии оценивают на основе данных, характеризующих степень загрязненности воздуха рабочей зоны АПФД, и определения соответствующего класса вредности условий труда (см. таблицу 1). Оценка риска профзаболевания включает следующие этапы:
2) Оценивают риск по пылевому фактору на основе классов условий труда, применяемых при санитарно-гигиеническом контроле (см. [7] и таблицу 1). В соответствии с таблицей 1 различия степени вредности отдельных классов работ для высоко-, умеренно- и слабофиброгенных АПФД могут быть установлены при не менее чем десяти-двадцатикратном превышении допустимого уровня воздействия, определяемого КПН. При этом, если для первого объединенного класса условий труда (3.1 + 3.2) достаточно рекомендации по проведению оздоровительных мероприятий, то для второго объединенного класса условий труда (3.3 + 3.4) необходимо также использовать защиту временем. Именно поэтому при оценке риска профзаболевания, основанной на показателях здоровья, целесообразно руководствоваться классификацией условий труда, как можно менее дифференцированной, в зависимости от реальных ПН и КПН, что и нашло отражение в таблице 1.
Класс условий труда
Высоко- и умереннофиброгенные АПФД 1) ; пыли, содержащие природные (асбесты, цеолиты) и искусственные (стеклянные, керамические, углеродные и др.) минеральные волокна
Слабофиброгенные АПФД 2)
1) Высоко- и умереннофиброгенные пыли (Ксс £ 2 мг/м 3 ).
2) Слабофиброгенные пыли (Ксс > 2 мг/м 3 ).
3) Опасность в данном случае определяется не ПН, а возможностью взрывов и пожаров при высоких концентрациях горючих АПФД, особенно органического происхождения.
В условиях, когда используемое оборудование и технические средства борьбы с пылью не позволяют снизить ее содержание в воздухе до уровня ПДК и допустимых уровней экспозиции (КПН), контролируемое ограничение пылевой экспозиции на основе расчетов ПН становится эффективной мерой снижения уровня профессиональных заболеваний пылевой этиологии.
4) Определяют наиболее эффективный путь профилактики.
Безопасными можно считать работы до достижения суммарной экспозиционной дозы, оцениваемой (в граммах) на основе расчета контрольной пылевой нагрузки (КПН).
Работа в условиях десяти-двадцатикратного превышения КПН, попадающих в диапазон классов условий труда 3.1 + 3.2 и 3.3 + 3.4, будет сопровождаться развитием профессиональных заболеваний у 10 % и 40 % работников соответственно.
КПН по существу ограничивает безопасный «контрольный» уровень пылевой нагрузки на органы дыхания, в пределах которого контакт с АПФД не будет сопровождаться развитием профессиональных заболеваний. Таким образом, учет КПН является эффективной мерой профилактики заболеваний пылевой этиологии.
Врач должен учитывать также характер воздействия пылевого фактора, постоянный или интермитирующий, поскольку даже при одинаковой пылевой нагрузке на органы дыхания он может иметь разное значение. С одной стороны, интермитирующее действие может способствовать увеличению скорости выведения пыли из легких. С другой, пики разовых концентраций, превышающих значение среднесменной в пять и более раз, приводят к уменьшению скорости выведения пыли и соответственно более выраженному фиброгенному действию. Поэтому необходимо сокращать частоту появления пиков, характеризуемых максимально-разовыми концентрациями, и продолжительность их действия. Они должны наблюдаться не чаще 4 раз в смену при общей продолжительности действия не более 30 мин.
5) Разрабатывают перечень рекомендаций по улучшению условий труда, связанных с ограничением и снижением пылевой экспозиции, совершенствуют классификацию условий труда с учетом степени вредности и характера воздействия АПФД. Основой для составления рекомендаций являются выявленные изменения в состоянии здоровья работников, соответствующие им значения ПН и уровни воздействия АПФД, определенные с использованием выборочных характеристик ПФ (см. 6.1), служащих доказательной базой при установлении связи заболевания органов дыхания с профессиональной деятельностью работника.
Библиография
[1] ГН 2.2.5.1313-03 Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны. Гигиенические нормативы.
[3] Р 2.2.1766-03 Руководство по оценке профессионального риска для здоровья работников. Организационно-методические основы, принципы и критерии оценки.
[5] ГОСТ Р 50779.10-2000 Статистические методы. Вероятность и основы статистики. Термины и определения.
[6] ГОСТ Р ИСО 15202-1-2007 Воздух рабочей зоны. Определение содержания металлов и металлоидов в твердых частицах аэрозоля методом атомной эмиссионной спектрометрии с индуктивно-связанной плазмой. Часть 1. Отбор проб.
[7] Р 2.2.2006-05 Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда.
Ключевые слова: воздух рабочей зоны, аэрозоли преимущественно фиброгенного действия, оценка риска, пылевые нагрузки на органы дыхания, классификация условий труда, профзаболевания пылевой этиологии