Ферромагнитные сплавы что это

Ферромагнитные материалы

Ферромагнитные сплавы что это

Любой ферромагнетик принадлежит к одной из двух групп: магнитно-мягких, либо магнитно-твердых.

Ферромагнитные материалы магнитно-мягкой группы

Данные материалы активно используются в магнитопроводах разнообразных технических изделий с постоянным, либо переменным (к примеру, в трансформаторных магнитопроводах) магнитным потоком. Они характеризуются небольшой (не более 400А/м) коэрцитивной силой при хороших показателях магнитной проницаемости (далее: проницаемости), и невысоких потерях гистерезисной природы. Сюда входят: техническое железо, а также, оксидные ферромагнетики, некоторые марки стали: низкоуглеродистой и электротехнической листовой, а также перамаллои (железно-никелевые сплавы, с высокой проницаемостью).

Техническое железо, содержит не свыше 0,04% углерода, а также различные стали и чугун часто используют в магнитопроводах, которые работают в постоянном магнитном поле. У него высокие показатели индукции насыщения (до 2,2 Тл) и проницаемости при небольшой коэрцитивной силе.

К электротехническим сталям принадлежат сплавы железа с кремнием, которого может содержаться 1 – 4%. Варьируя процент кремния, а также, используя различные технологические методы, получают материалы с различающимися магнитными параметрами. Наличие кремния способствует улучшению магнитных параметров железа: повышению как начальной, так и наивысшей проницаемости при дополнительном снижении и коэрцитивной силы, и гистерезисных энергопотерь. При этом повышается сопротивление, что также полезно, поскольку в результате, становится меньше т.н. вихревых токов, неизбежно образующихся при повторяющихся изменениях параметров поля. Именно эти токи являются одной из основных причин нагрева магнитопроводов.

Электротехнические стали с невысоким процентом кремния характеризуются слабой проницаемостью при высоких показателях индукции насыщения и значительными удельными потерями. Их используют в различных потребителях постоянного, либо, низкочастотного переменного тока. Сталь с более высоким процентом кремния используют при необходимости хорошей проницаемости в условиях слабых, либо средних полей, минимизации потерь от вихревых токов и гистерезиса. Данные стали могут использоваться в магнитопроводах, которые работают при высокочастотном переменном токе.

Несколько подробнее о самых распространенных магнитно-мягких материалах

Пермаллои

Этим термином обозначается ряд сплавов железа и никеля. Содержание компонентов в них различается, также, в состав некоторых из пермаллоев могут входить другие легирующие добавки вроде молибдена или хрома. Все пермаллои отличаются превосходной проницаемостью, превосходя по данному показателю электротехническую (кремниевую) сталь в 10-15 раз.

Показатели напряженности поля, необходимой для достижения индукции насыщения у этих сплавов невысоки (от десятых долей до сотен А/м) и зависят от конкретного сплава. У одних индукция насыщения очень низка, их Bs может составлять 0,6-0,8 Тл, у других – значительно выше: 1,3-1,6 Тл. К первой категории относятся сплавы с большим содержанием никеля. К примеру сплав, состоящий из никеля на 79% при 3,8% молибдена имеет следующие характеристики: μн=22000; μmax=120000; Bs=0,75Тл. К другой категории принадлежат пермаллои, где содержится значительно меньше никеля. Так, у сплава с содержанием никеля 45% характеристики следующие: μн =2500; μmax=23000; Bs=1,5Тл.

Ферромагнитные сплавы что это Рисунок 1 — Петля гистерезиса пермаллоев

В пермаллоях, где петля гистерезиса имеет форму, напоминающую прямоугольник (рис. 1), уровень её близости к классической прямоугольной форме соответствует отношению значений остаточной (Br) к наибольшей (Bmax) индукции. За Bmax здесь принимается показатель индукции в поле, с напряженностью выше коэрцитивной силы в 5-10 раз. Данное отношение может составлять до 0,85-0,99. Коэрцитивная сила у подобных пермаллоев составляет от 1 до 30 А/м.

Магнитные качества пермаллоев во многом определяются не только их составом, но и методом их производства.

Ферриты

К группе ферритов относятся ферромагнетики, получаемые смешиванием окислов нескольких элементов, в число которых обязательно входит железо и цинк. Процесс их изготовления состоит в следующем. Сначала нужная смесь измельчается, затем спрессовывается и отжигается при 1200°С. В результате получается готовый магнитопровод заданной формы.

У ферритов весьма значительно удельное сопротивление, поэтому потери от вихревых токов минимальны. Это делает их востребованными для использования при высокочастотных токах.

Начальная проницаемость ферритов также весьма значительна при невысокой индукции насыщения (0,18 — 0,32 Тл) и небольшой коэрцитивной (8 – 80 А/м) силе.

Магнитодиэлетрики

Материалы данной группы получают смешиванием мелкофракционного ферромагнитного порошка с различными изолирующими материалами (обычно: полиэтилен или ПВХ) с последующей формовкой, прессовкой и запеканием. В результате, микроскопические частицы ферромагнетика разделяются тонким слоем непроводящего ток и немагнитного вещества.

Магнитодиэлектрики (так же, как и ферриты) служат для производства сердечников в разнообразных электромагнитных изделиях: приемниках, передатчиках, усилителях, компьютерах и т.д.

Ферромагнитные сплавы что это Рисунок 2 — Статическая петля магнитного гистерезиса магнитопровода ГАММАМЕТ 412А

Работы над созданием новых типов магнитно-мягких материалов продолжаются и сейчас. Так, недавно специалистами фирмы ГАММАМЕТ был создан магнитопровод ленточного типа «гаммамет 412А». Его изготавливают из специальной ленты с нанокристаллическим строением, толщина которой составляет 25 мкм. Саму ленту получают скоростным закаливанием одного из сплавов, где главной составляющей служит железо. Затем магнитопроводы подвергают термообработке в условиях продольного магнитного поля. После этого их петля гистерезиса приобретает форму очень близкую к правильной прямоугольной (рис. 2). Соответственно данные магнитопроводы характеризуются минимальными показателями удельных магнитных потерь.

Гаммамет 412А способен стать хорошей заменой ферритам и другим материалам, имеющим петлю гистерезиса близкую к прямоугольной форме. Среди перспективных сфер использования: различные магнитные устройства и установки, насыщающие дроссели и т.д.

Ферромагнитные материалы магнитно-твердой группы

Из материалов данной группы производят практически все постоянные магниты. Все они характеризуются значительными величинами как коэрцитивной силы, так и остаточной индукции.

Сюда относят углеродистую, а также некоторые марки легированной (хромом, кобальтом или вольфрамом) стали. Величина коэрцитивной силы варьируется в границах от 5000 до 8000 А/м при величине остаточной индукции в 0,8 – 1 Тл. Все эти стали достаточно пластичны, их можно ковать, прокатывать и обрабатывать резанием. Промышленность их производит листами и полосами.

Наилучшие магнитные параметры среди материалов этой группы имеют сплавы «альни», «альнико» и т.д. Их коэрцитивная сила составляет Hc = 20 000 — 60 000 А/м, при величине остаточной индукции в Br = 0,4 — 0,7 Тл.

Источник

Свойства ферромагнитных материалов и их применение в технике

Вокруг проводника с электрическим током, даже в вакууме, существует магнитное поле. И если в это поле внести вещество, то магнитное поле изменится, поскольку любое вещество в магнитном поле намагничивается, то есть приобретает больший или меньший магнитный момент, определяемый как сумма элементарных магнитных моментов, связанных с частями, из которых состоит данное вещество.

Суть явления заключается в том, что молекулы многих веществ обладают собственными магнитными моментами, ведь внутри молекул движутся заряды, которые образуют элементарные круговые токи, и значит сопровождаются магнитными полями. Если внешнего магнитного поля к веществу не приложено, магнитные моменты его молекул ориентированы в пространстве хаотично, и суммарное магнитное поле (как и общий магнитный момент молекул) такого образца будет равно нулю.

Ежели образец внести во внешнее магнитное поле, то ориентация элементарных магнитных моментов его молекул приобретет под действием внешнего поля преимущественное направление. В результате суммарный магнитный момент вещества уже не будет нулевым, ведь магнитные поля отдельных молекул в новых условиях не компенсируют друг друга. Так у вещества возникает магнитное поле B.

Если же молекулы вещества изначально не имеют магнитных моментов (есть и такие вещества), то при внесении подобного образца в магнитное поле, в нем индуцируются круговые токи, то есть молекулы приобретают магнитные моменты, что опять же в результате приводит к возникновению у образца суммарного магнитного поля B.

Ферромагнитные сплавы что это

Большинство известных веществ слабо намагничиваются в магнитном поле, но встречаются и такие вещества, которые отличаются сильными магнитными свойствами, их то и называют ферромагнетиками. Примеры ферромагнетиков: железо, кобальт, никель, а также их сплавы.

К ферромагнетикам относятся твердые вещества, которые при невысоких температурах обладают самопроизвольной (спонтанной) намагниченностью, сильно изменяющейся под действием внешнего магнитного поля, механической деформации или изменяющейся температуры. Именно так ведут себя сталь и железо, никель и кобальт, а также из сплавы. Их магнитная проницаемость в тысячи раз выше чем у вакуума.

Именно по этой причине в электротехнике для проведения магнитного потока и для преобразования энергии традиционно используют магнитопроводы из ферромагнитных материалов.

Ферромагнитные сплавы что это

У подобных веществ магнитные свойства зависят от магнитных свойств элементарных носителей магнетизма — электронов, движущихся внутри атомов. Конечно, электроны, двигаясь по орбитам в атомах вокруг своих ядер, образуют круговые токи (магнитные диполи). Но при этом электроны вращаются еще и вокруг своих осей, создавая спиновые магнитные моменты, которые как раз и играют главную роль в намагничивании ферромагнетиков.

Ферромагнитные свойства проявляются лишь тогда, когда вещество пребывает в кристаллическом состоянии. Кроме того данные свойства сильно зависят от температуры, ведь тепловое движение препятствует устойчивой ориентации элементарных магнитных моментов. Так, для каждого ферромагнетика определяется конкретная температура (точка Кюри), при которой структура намагничивания разрушается и вещество превращается в парамагнетик. Например для железа это 900 °C.

Даже в слабых магнитных полях ферромагнетики способны намагнититься до состояния насыщения. Кроме того их магнитная проницаемость зависит от величины приложенного внешнего магнитного поля.

Вначале процесса намагничивания магнитная индукция B в ферромагнетике растет сильнее, а значит магнитная проницаемость его велика. Но когда наступает насыщение, дальнейшее увеличение магнитной индукции внешнего поля не приводит больше к нарастанию магнитного поля ферромагнетика, и значит магнитная проницаемость образца уменьшилась, теперь она стремится к 1.

Важное свойство ферромагнетиков — остаточная намагниченность. Допустим, в катушку поместили ферромагнитный стержень, и, повышая ток в катушке, довели его до насыщения. После этого отключили ток в катушке, то есть убрали магнитное поле катушки.

Можно будет заметить, что стержень размагнитился не до того состояния, в котором он пребывал вначале, его магнитное поле окажется больше, то есть будет иметь место остаточная индукция. Стержень превратился таким образом в постоянный магнит.

Чтобы обратно размагнитить такой стержень, необходимо будет приложить к нему внешнее магнитное поле противоположного направления, и с индукцией равной остаточной индукции. Значение модуля магнитной индукции поля, которое необходимо приложить к намагниченному ферромагнетику (постоянному магниту) чтобы размагнитить его, называется коэрцитивной силой.

Кривые намагничивания (петли гистерезиса) у разных ферромагнитных материалов отличаются друг от друга.

У некоторых материалов петли гистерезиса широкие — это материалы с высокой остаточной намагниченностью, их относят к магнитно-твердым материалам. Магнитно-твердые материалы применяют в изготовлении постоянных магнитов.

Сегодня ферромагнетики играют очень важную роль в технике. Магнитно-мягкие материалы (ферриты, электротехнические стали) используются в электромоторах и генераторах, в трансформаторах и дросселях, а также в радиотехнике. Из ферритов изготавливают сердечники катушек индуктивности.

Магнитно-твердые материалы (ферриты бария, кобальта, стронция, неодим-железо-бор) применяют для изготовления постоянных магнитов. Постоянные магниты находят широкое применение в электроизмерительных и акустических приборах, в двигателях и генераторах, в магнитных компасах и т. д.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Ферромагнитные сплавы что это

Ферромагнитные сплавы что это

Ферромагнитные сплавы что это

Ферромагнитные сплавы что это

Ферромагнитные сплавы что это

Ферромагнитные сплавы что это

Ферромагнитные сплавы что это

Ферромагнитные сплавы что это

ФЕРРОМАГНЕТИКИ, СВОЙСТВА И ПРИМЕНЕНИЕ

Если в магнитное поле, образованное токами в проводах ввести то или иное вещество, поле изменится. Это объясняется тем, что всякое вещество является магнетиком, то есть способно под воздействием магнитного поля намагничиваться – приобретать магнитный момент М. Этот магнитный момент складывается из элементарных магнитных моментов m0, связанных с отдельными частицами тела М = m0. В настоящее время установлено, что молекулы многих веществ обладают собственным магнитным моментом, обусловленным внутренним движением зарядов. Каждому магнитному моменту соответствует элементарный круговой ток, создающий в окружающем пространстве магнитное поле. При отсутствии внешнего магнитного поля магнитные моменты молекул ориентированы беспорядочно, поэтому обусловленное ими результирующее магнитное поле равно нулю. Равен нулю и суммарный магнитный момент вещества. Последнее относится и к тем веществам, молекулы которых при отсутствии внешнего поля не имеют магнитных моментов. Если же вещество поместить во внешнее магнитное поле, то под действием этого поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, и вещество намагничивается – его суммарный магнитный момент становится отличным от нуля. При этом магнитные поля отдельных молекул уже не компенсируют друг друга, в результате возникает поле B. Иначе происходит намагничивание веществ, молекулы которых при отсутствии внешнего поля не имеют магнитного момента. Внесение таких веществ во внешнее поле индуцирует элементарные круговые токи в молекулах, и молекулы, а вместе с ними и все вещество приобретают магнитный момент, что также приводит к возникновению поля В1. Большинство веществ при внесении в магнитное поле намагничиваются слабо. Сильными магнитными свойствами обладают только ферромагнитные вещества: железо, никель, кобальт, многие их сплавы.

ФЕРРОМАГНЕТИКИ ЕГО СВОЙСТВА

Ферромагнетики – твердые вещества, обладающие при не слишком высоких температурах самопроизвольной намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры. К ним относятся: сталь, железо, никель, кобальт, их сплавы. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока. Такие элементы называются магнитопроводы.

Магнитные свойства веществ зависят от магнитных свойств элементарных носителей магнетизма движущихся внутри атомов электронов, а также от совместного действия их групп. Электроны в атомах, двигаясь по орбитам вокруг ядра атома, образуют элементарные токи или магнитные диполи, которые характеризуются магнитным моментом m. Величина его равна произведению элементарного тока i и элементарной площадки s, ограниченной элементарным контуром m = is. Вектор m направлен перпендикулярно к площадке s по правилу буравчика. Магнитный момент тела представляет собой геометрическую сумму магнитных моментов всех диполей. Кроме орбитальных моментов, электроны, вращаясь вокруг своих осей, создают еще спиновые моменты, которые играют важнейшую роль в намагничивании ферромагнетиков.

Ферромагниты имеют следующие свойства.

1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии;

2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри. Так для чистого железа значение температуры Кюри приблизительно равно 900 °C;

3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рис. 1 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B0;

4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 2).

Это объясняется тем, что вначале с увеличением B0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B0 магнитная индукция B1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А) (рис. 3), а затем уменьшать ток в соленоиде, а вместе с ним и B0, то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B0 = 0 (ток в соленоиде выключен), индукция будет равна Br (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, то есть приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до Boc, размагничивают стержень (B = 0).

Модуль Boc индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой.

При дальнейшем увеличении B0 можно намагнитить стержень до насыщения (точка А).Уменьшая теперь B0 до нуля, получают опять постоянный магнит, но с индукцией –Br (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B0 станет равной Boc. Продолжая увеличивать B0, снова намагничивают стержень до насыщения (точка А).

Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B0. Это отставание называется явлением гистерезиса. Изображенная на рисунке 3кривая называется петлей гистерезиса.

Гистерезис – свойство систем, которые не сразу следуют за приложенными силам. Гистерезис был открыт в 1880 г. Варбургом (1846–1931). Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах – трансформаторах, магнитопроводах.

ОСНОВЫ ТЕОРИИ ФЕРРОМАГНЕТИЗМА

В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, то есть свойство кристаллов железа. Прежде всего на это указывает зависимость магнитных свойств железа и других ферромагнитных материалов от обработки, изменяющей их кристаллическое строение. Далее оказывается, что из парамагнитных и диамагнитных металлов можно изготовить сплавы, обладающие высокими ферромагнитными свойствами. Таков, например, сплав Гойслера, почти не уступающий по своим магнитным свойствам железу, хотя он состоит из таких слабомагнитных металлов, как медь (60 %), марганец (25 %) и алюминий (15 %). С другой стороны, некоторые сплавы из ферромагнитных материалов, например сплав из 75 % железа и 25 % никеля почти не магнитны. Наконец, самым веским подтверждением является то, что при достижении определенной температуры (точка Кюри) все ферромагнитные вещества теряют свои ферромагнитные свойства.

Ферромагнитные вещества отличаются от парамагнитных не только весьма большим значением магнитной проницаемости и ее зависимостью от напряженности поля, но и весьма своеобразной связью между намагничиванием и напряженностью намагничивающего поля. Эта особенность находит свое выражение в явлении гистерезиса со всеми его следствиями: наличием остаточного намагничивания и коэрцитивной силы.

Взаимодействие магнитных моментов отдельных атомов ферромагнетика приводит к созданию чрезвычайно сильных внутренних магнитных полей, действующих в пределах каждой такой области и выстраивающих, в пределах этой области, все атомные магнитики параллельно друг другу, как показано на рис. 4. Таким образом, даже при отсутствии внешнего поля ферромагнитное вещество состоит из ряда отдельных областей, каждая из которых самопроизвольно намагничена до насыщения. Но направление намагничивания для разных областей различно, так что вследствие хаотичности распределения этих областей тело в целом оказывается в отсутствии внешнего поля не намагниченным.

рис.4 – Схема, иллюстрирующая ориентацию молекулярных магнитов в «областях самопроизвольного намагничивания» А и В.

а) Внешнее магнитное поле отсутствует;

б) под действием внешнего магнитного поля Н области А и В перестраиваются.

Под влиянием внешнего поля происходит перестройка и перегруппировка таких «областей самопроизвольного намагничивания», в результате которой получают преимущество те области, намагничивание которых параллельно внешнему полю, и вещество в целом оказывается намагниченным.

Один из примеров такой перестройки областей самопроизвольного намагничивания показан на рис.4. Здесь схематически изображены две смежные области, направления намагничивания которых перпендикулярны друг к другу.

При наложении поля Н часть атомов области В, в которой намагничивание перпендикулярно к полю, на границе её с областью А, в которой намагничивание параллельно полю, поворачивается, так что направление их магнитного момента становится параллельным полю. В результате область А, намагниченная параллельно внешнему полю, расширяется за счет тех областей, в которых направление намагничивания образует большие углы с направлением поля, и возникает преимущественное намагничивание тела по направлению внешнего поля. В очень сильных внешних полях возможны и повороты направления ориентации всех атомов в пределах целой области.

При снятии (уменьшении) внешнего поля происходит обратный процесс распада и дезориентации этих областей, то есть размагничивание тела. Ввиду больших по сравнению с атомами размеров «областей самопроизвольного намагничивания» как процесс ориентации их, так и обратный процесс дезориентации происходит с гораздо большими затруднениями, чем установление ориентации или дезориентации отдельных молекул или атомов, имеющее место в парамагнитных и диамагнитных телах. Этим и объясняется отставание намагничивания и размагничивания от изменения внешнего поля, то есть гистерезис ферромагнитных тел.

Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнито-мягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнито-жёсткие материалы применяют при изготовлении постоянных магнитов.

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, то есть создает магнитное поле в окружающем пространстве.

Упорядоченная ориентация элементарных токов не исчезает привыключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты. Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах.

Широкое распространение в радиотехнике, особенно в высокочастотной радиотехнике, получили ферриты, сочетающие ферромагнитные и полупроводниковые свойства. Из ферритов изготавливают сердечники катушек индуктивности, магнитные ленты, пленки и диски.

Ферромагнетики – твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры.

Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной. При перемагничивании ферромагнетика в нем происходят необратимые преобразования энергии в тепло.

При высокой температуре ферромагнитные свойства всех ферромагнитных веществ исчезают.

В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, т. е. свойство кристаллов железа.

Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнито-мягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнито-жёсткие материалы применяют при изготовлении постоянных магнитов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Иродов И.Е. Электромагнетизм. Основные законы. – 3-е изд. М, Спб.: Лаборатория базовых знаний, 2000. – 352 с.

2. Ландсберг Г.С. Элементарный учебник физики: Учебное пособие. В 3-х томах. / Под редакцией Г.С. Ландсберга: Т.П. Электричество и магнетизм. – 11-е изд. – М.: Наука, Физматлит, 1995. – 480с.

3. Ферромагнетики // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D1%80%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B8.

4. Точка Кюри // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%A2%D0%BE%D1%87%D0%BA%D0%B0_%D0%9A%D1%8E%D1%80%D0%B8.

5. Трофимова Т.И. Курс физики: Пособие для вузов. – 7-е изд. – М.: Высш. шк., 2002. – 542 с.

6. Яворский Б.М., Детлаф А.А. Справочник по физике. – 3-е изд., испр. – М.: Наука. Гл. ред. физ.-мат. лит., 1990. – 624 с.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *