Феррит что это за материал

Классификация по группам и основные электромагнитные параметры отечественных магнитомягких ферритов

Ферриты — это магнитные материалы, представляющие собой смесь окислов металлов и обладающие ферромагнетизмом. Магнитомягкие ферриты — это ферриты с коэрцитивной силой по индукции не более 4 кА/м.

При применении ферритов необходимо учитывать их эксплуатационные характеристики.

Область применения каждой марки феррита определяется критической частотой, выше которой резко возрастают потери и снижается магнитная проницаемость. Магнитные свойства ферритов резко меняются при одновременном наложении постоянных и переменных полей. Кроме того, после воздействия таких полей имеет место остаточный магнитный эффект, поэтому сердечники не рекомендуется подвергать намагничиванию полями, превышающими рабочие поля.

Механические свойства ферритов подобны свойствам керамических изделий: их режут алмазным инструментом; они хорошо шлифуются и полируются; склеивают их клеем БФ-4. Под воздействием механических нагрузок в сердечниках возникают механические напряжения, что может разрушить сердечник или недопустимо изменить его электромагнитные параметры как во время действия нагрузки так и после нее. Влияние механических нагрузок на электромагнитные параметры сердечников зависит от направления вектора вызываемых ими механических напряжений относительно направления вектора напряженности рабочего поля.

К наибольшим изменениям параметров сердечников приводят механические напряжения, действующие перпендикулярно или параллельно направлению магнитного поля. В этих случаях изменения электромагнитных параметров одинаковы и могут отличаться только знаком.

При воздействии на сердечники динамических, механических нагрузок (ударов, вибраций) с динамическими импульсами менее 5 мс не рекомендуется допускать возникновения в сердечниках импульсов механических напряжений более 490332 Па (5 кгс/см²).

Нельзя допускать непосредственные удары по сердечникам и их падение с высоты на жесткое основание, так как при этом может произойти значительное необратимое изменение значения начальной магнитной проницаемости.

Для ферритов, с точки зрения прочности, самыми опасными видами деформации являются растяжение и изгиб. Предел прочности ферритовых материалов при растяжении (1-2)·10 4 кПа, при изгибе — в 2…2,5 раза больше, а при сжатии — в 10…15 раз больше, чем при растяжении.

При кратковременном воздействии повышенной и пониженной температур и при температурных циклах могут быть остаточные изменения магнитной проницаемости.

При увлажнении ферритов более чем на 5% могут незначительно возрасти магнитные потери на средних и высоких частотах из-за изменения электропроводности ферритов и диэлектрических потерь. При использовании ферритов с обмоткой на частотах 3МГц и более изменение диэлектрических характеристик при увлажнении вызывает изменение электромагнитных параметров из-за изменения собственной емкости и ее потерь. Вследствие этого при использовании ферритов на частотах свыше 3 МГц в условиях повышенной влажности рекомендуется применять герметизацию.

При радиационном облучении ферритов изменение электромагнитных параметров существенно только при облучении интегральным потоком нейтронов с интенсивностью выше 1·10 5 нейтронов/см². Под воздействием гамма-нейтронного облучения магнитная проницаемость ферритов уменьшается, особенно у марганец-цинковых ферритов.

Ферриты обладают временной нестабильностью магнитной проницаемости, которая проявляется в спаде значения магнитной проницаемости при длительном воздействии положительных температур или длительном хранении.

Разомкнутые сердечники характеризуются значением эффективной магнитной проницаемости. Тангенс угла магнитных потерь, температурная и временная нестабильность ориентировочно уменьшаются в Xн/Yе раз, а постоянная гистерезиса — в (Xн/Yе)² раз.

Источник

О минерале, который притягивается к стальным изделиям, человечеству стало известно еще в 3 веке до нашей эры. Люди были поражены, но дальнейшего развития способов его применения не последовало. Второе рождение феррита произошло после открытия компаса. Кусок минерала, закрепленный на плавающей доске, всегда указывал в одну сторону, облегчая морякам поиск нужного направления.

Окончательное признание феррит получил после опубликования теории взаимодействия электрических и магнитных полей Фарадеем. Это позволило миру взглянуть по-новому на свойства и применение феррита. Так что же это за материал и почему он так интересен радиоэлектроникам.

Феррит что это за материал

Общая характеристика и химический состав

Ферриты представляют собой сплав оксида железа с оксидом другого ферромагнитного металла: медь, цинк, кобальт, никель и т. д. В промышленном применении наибольшее распространение получили следующие типы ферритов:

Свойства и особенности

Главным достоинством ферритовых сплавов является наличие повышенного удельного электросопротивления с сочетанием высоких магнитных свойств. Наиболее выгодным будет применение феррита при таких эксплуатационных характеристиках как малое значение индукции и высокие частоты.

При низких значениях частот повышается относительная диэлектрическая проницаемость феррита. При одновременном наличии высокой магнитной проницаемости это может привести к наложению волн друг на друга. Как результат возникает объемный резонанс, при котором вихревые токи увеличиваются в разы, а, следовательно, потери.

Ухудшение магнитных свойств в ферритах происходит по следующим причинам:

Феррит обладает незначительными механическими свойствами. Не отличаются ни прочностью, ни пластичностью.

Модуль упругости составляет в среднем 45 000 МПа. Модуль сдвига ферритовых сплавов 5500 МПа. Предел прочности на растяжение равен 120 МПа. На сжатие 900 МПа. Значение коэффициента Пуансона колеблется в пределах 0,25-0,45.

Феррит что это за материал

Виды применения

В силу вышеперечисленных свойств главным потребителем ферритов является радиоэлектроника. Применение определенного сплава феррита ограничивается значением критических частот, выход за пределы которых увеличивает потери и снижает эксплуатационные свойства, в частности магнитную проницаемость. Ферритовые сплавы по свойствам и применению делят на:

Феррит что это за материал

Ценообразование

Стоимость феррита определяется следующими свойствами:

Источник

Ферритовые материалы TDK

В начале 30-х годов два профессора Токийского Технологического университета Йогоро Като и Такеши Такеи изобрели ферриты – магнитные материалы, представляющие собой смесь оксида железа Fe2O3 с оксидами других металлов (таких как Fe, Mn, Zn, Ni, Mg, Co, Cu) и обладающие ферромагнетизмом. Вскоре после этого, в 1935 году, и была основана компания TDK, которая впервые поставила производство магнитомягких ферритовых материалов для использования в промышленности и технике.

Первым продуктом TDK на рынке стали «оксидные кольца» (рис. 1) для изготовления трансформаторов и катушек индуктивности. Уже с начала своей истории развития приоритетом для TDK стали инновационные разработки в области улучшения свойств ферритовых материалов и поиск новых областей их применения в электронной технике.

Феррит что это за материалРисунок 1. Первый в мире ферритовый сердечник.

Основные электромагнитные параметры ферритовых материалов

Условно в зависимости от ширины петли гистерезиса, ферритовые материалы можно поделить на магнитотвёрдые и магнитомягкие (рис. 3).

Одним из важных параметров ферритовых материалов является магнитная проницаемость. Связь магнитной проницаемости µ, напряженности магнитного поля Н и магнитной индукции В выражается следующей формулой:

Абсолютная магнитная проницаемость µab данного материала равна произведению относительной магнитной проницаемости µ на магнитную проницаемость вакуума µo. Относительная магнитная проницаемость среды показывает во сколько раз индукция магнитного поля в данной среде отличается от индукции этого же поля в вакууме. Относительная магнитная проницаемость среды является безразмерной величиной.

Как видно из вышеприведенной формулы, при приложении внешнего магнитного поля Н магнитная индукция внутри феррита В усиливается тем больше, чем больше относительная магнитная проницаемость µ.

В связи с нелинейной зависимостью B = f(H) проницаемость µ не является величиной постоянной. На рис. 4 приведена характерная зависимость магнитной проницаемости µ ферритового материала от напряженности магнитного поля Н. Здесь же представлена кривая первоначального намагничивания В(Н).

Феррит что это за материалРисунок 4. Кривая первоначального намагничивания и зависимость магнитной проницаемости от напряженности магнитного поля.

Начальная магнитная проницаемость µi определяется тангенсом угла наклона касательной в точке, где напряженность поля H → 0, к основной кривой намагничивания. Для описания поведения магнитного материала в переменном магнитном поле вводится амплитудная проницаемость µa, определяемая как тангенс угла наклона прямой, проведенной из начала координат в точку кривой намагничивания. Максимальное значение проницаемости µm достигается при приближении к области насыщения кривой намагничивания, после чего при дальнейшем увеличении напряженности магнитного поля H, начинается ее падение.

Феррит что это за материалРисунок 5. Зависимость начальной магнитной проницаемости от температуры.

Характер зависимости магнитной проницаемости от температуры зависит от свойств ферритового материала. Чтобы использовать феррит в широком температурном диапазоне, он должен иметь устойчивые электромагнитные характеристики, в частности с небольшим изменением магнитной проницаемости при изменении температуры. В качестве показателя изменения проницаемости от температуры вводят температурный коэффициент αµ проницаемости и относительный температурный коэффициент αF проницаемости:

Связь между относительной магнитной проницаемостью µ и индуктивностью L выражается следующей формулой:

Исходя из этой формулы видно, например, что нельзя допускать, чтобы дроссель работал с заходом в область насыщения, так как в этой области начинает резко падать проницаемость сердечника, а следовательно, индуктивность дросселя в этой области существенно уменьшится.

Для учёта характера изменения магнитного поля со временем вводится комплексная магнитная проницаемость, чтобы описать влияние среды на сдвиг фазы вектора магнитной индукции B по отношению к вектору напряженности магнитного поля H. Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, при это возникают вихревые токи (токи Фуко), являющиеся источником потерь из-за омического сопротивления проводников.

Как видно из представленных формул, µ ‘ – это вещественная часть, обозначающая индуктивную компоненту, а µ » – это мнимая часть, обозначающая резистивную компоненту.

Вещественная составляющая магнитной проницаемости µ ‘ определяет величину запаса магнитной энергии в магнитном веществе, возвращаемого при размагничивании, мнимая часть µ » определяет величину необратимых потерь на вихревые токи, перемагничивание (гистерезис), поглощение в веществе. Характеризуя потери, часто пользуются понятием тангенса угла магнитных потерь tanδ вещества. Это безразмерная величина, равная тангенсу угла между напряженностью магнитного поля Н и магнитной индукцией В, представляющих собой синусоидальные функции времени. Тангенс угла можно представить в следующем виде:

Важнейшей характеристикой магнитных материалов является зависимость комплексной магнитной проницаемости от частоты электромагнитного поля (дисперсия проницаемости). На рис. 5 в качестве примера приведены магнитные спектры (зависимости действительной части комплексной магнитной проницаемости от частоты) ряда никель-цинковых ферритов производства фирмы TDK, имеющих различную начальную магнитную проницаемость в диапазоне от 1 до 10000 МГц. Общим для всех спектров является существование области частот, где значение µ ‘ остается постоянным. При более высоких частотах магнитная индукция В не успевает следовать за изменением магнитного поля Н, вызывая фазовый сдвиг. Из-за этого действительная часть проницаемости µ ‘ (индуктивная компонента) довольно быстро падает до очень малых значений, а мнимая часть µ » (резистивная компонента) начинает увеличиваться, и, следовательно, магнитные потери возрастают. Существует некоторое ограничивающее значение магнитной проницаемости в высокочастотной области, называемое пределом Сноека (на рис. 6 обозначен красной линией). Предел Сноека ограничивает частотный диапазон, допустимый для использования ферритового материала.

Феррит что это за материалРисунок 6. Зависимость действительной части комплексной магнитной проницаемости от частоты. Предел Сноека.

Видно, что в материалах (µi(HF70)=1500 > µi(HF57)=600 > µi(HF40)=120) с более высоким значением µi снижение действительной части магнитной проницаемости начинается в области более низких частот.

Кроме того, материалы (Bs(HF70)=280 мТл Феррит что это за материалРисунок 7. Mn-Zn и Ni-Zn ферриты.

По сравнению с Mn-Zn ферритами, Ni-Zn ферриты имеют невысокие значения начальной проницаемости μi, и магнитной индукции насыщения Вs, высокие магнитные потери, однако удельное сопротивление высокое, поэтому прямая обмотка сердечника возможна. Ni-Zn ферриты используются для изготовления маленьких катушек индуктивности и чип индуктивностей, помехоподавляющих бусин и фильтров, помещенных в корпус.

Стоит отметить, что Mn-Zn ферриты обладают меньшей зависимостью магнитной проницаемости от напряженности магнитного поля по сравнению с никель-цинковыми. Ширина петли гистерезиса у них меньше ввиду меньших значений остаточной индукции и коэрцитивной силы при достаточно высоких значениях индукции. Особенностью марганцево-цинковых ферритов является более высокое значение температуры Кюри к по сравнению с никель-цинковыми ферритами и меньшие значения температурного коэффициента магнитной проницаемости.

В таблице 1 представлены характеристики ферритовых материалов TDK, используемых для кабелей круглого сечения (в том числе бусин), плоских кабелей и коннекторов.

Рис. 8 демонстрирует зависимости вещественной и мнимой частей магнитной проницаемости от частоты для материалов, указанных в таблице 1. Обращает внимание то, что мнимая часть магнитной проницаемости μ˝ достигает максимального значения на частоте, на которой вещественная часть магнитной проницаемости μ’ снижается примерно на половину по сравнению со значением начальной магнитной проницаемости. Сноек в 1948 г. объяснил такую взаимосвязь существованием ферромагнитного резонанса в поле магнитной анизотропии.

Феррит что это за материалРисунок 8. Зависимости действительной и мнимой частей магнитной проницаемости от частоты для ферритовых материалов HF90, HF70, HF57, HF40.

Характеристики ферритовых Mn-Zn материалов, используемых для изготовления синфазных дросселей, представлены в таблице 2.

Таблица 2. Характеристики материалов помехоподавляющих ферритов. Для синфазных дросселей.
Название материалаHS52HS72HS10
МатериалMn-ZnMn-ZnMn-Zn
Начальная проницаемость μi550075001000
Температура Кюри Tc°С> 130> 130> 120
Магнитная индукция насыщения Bs(мT)410410380
Удельное сопротивление ρ(Ω⋅м)10.20.2
Плотность db(x10³кг/м³)4.94.94.9
Рабочая область частот ν (МГц)∼1∼500∼500
Области использования:
Феррит что это за материал

Ферриты нашли широкое применение в качестве фильтров, используемых как на сигнальных проводах для ослабления внешних помех, так и на проводах питания для уменьшения создаваемых ими помех.

Часто ферритовые сердечники используются для отсечения помех посредством импеданса. В этом случае важно правильно подобрать не только материал феррита, но и конфигурацию сердечника, количество витков, чтобы получить импеданс достаточной величины для достижения помехоподавления в требуемой области частот. В этом случае помехи отражаются, но не исчезают. На рис. 9 представлены зависимости импеданса от частоты для кольца типоразмера 20х10х20 из ферритовых материалов HF90, HF70, HF57, HF40, HF30.

Феррит что это за материалРисунок 9. Зависимости импеданса от частоты для кольца типоразмера 20х10х20 из ферритовых материалов HF90, HF70, HF57, HF40, HF30.

Для ферритового вещества импеданс носит комплексный характер Z=(R,X). Его активная составляющая R связана, в первую очередь, с проводимостью. Реактивная компонента X определяется емкостными свойствами.

Феррит что это за материалРисунок 10. Частотные характеристики абсолютной величины импеданса |Z|=√ R²+Х² (а также активной R и реактивной X составляющих) и абсолютной величины магнитной проницаемости |µ|=√ µ ‘2 +µ »2 (а также действительной µ ‘ и мнимой µ » частей) для бусины типоразмера 6.4х5х3.2 из Ni-Zn феррита HF70. Количество витков = 1.

Источник

Ферриты (оксиферы)

Феррит – материал, представляющий собой соединение оксида железа и оксидов ферримагнетиков. Он имеет формулу MFe2O4. Это химическое соединение обладает кубической кристаллической решеткой и активно используется в радиоэлектронике, благодаря большому удельному сопротивлению и наличию магнитных свойств.

Феррит что это за материал

Основные свойства

Феррит обладает следующими физическими характеристиками:

Одним из основных физических свойств феррита является высокое электрическое сопротивление и магнитная проницаемость, что обуславливает низкие энергетические потери в высокочастотных зонах. Основным фактором, влияющим на этот параметр, является большая концентрация двухвалентных ионов железа. При повышенном количестве частиц Fe2+ увеличивается проводимость железного сплава и понижается его энергия активации. Высокое содержание двухвалентных ионов железа также приводит к снижению зависимости металла от различных свойств среды и состояния намагниченности.

Выделяют следующие механические свойства феррита:

Феррит что это за материал

Главными отличительными особенностями феррита являются его магнитные свойства. Они зависят от величины магнитной проницаемости железной модификации и тангенса угла потерь. На эти характеристики оказывают влияние интенсивность резонансных явлений и механические напряжения. Для сохранения магнитных свойств материала нужно ограничить величину физических нагрузок на поверхность металла.

На магнитные свойства феррита воздействуют следующие факторы:

Для большей части железных модификаций характерна нестабильность магнитной проницаемости при длительном хранении металла в теплых или холодных помещениях.
Ферриты являются полупроводниками и диэлектриками. Их электрические свойства зависят от процессов ионного обмена и температурного режима. При высоких температурах возрастает подвижность отрицательных зарядов химического соединения, что приводит к изменению электропроводности и удельного сопротивления феррита.Электрические свойства могут также изменяться при разных концентрациях ионов железа.

В процессе теплового движения частицы Fe2+ оказывают влияние на проводимость материала и энергию активации электропроводности. В результате снижается толщина энергетических барьеров, препятствующих перемещению отрицательных частиц из 1 иона в другой.

На многие параметры феррита влияют условия изготовления. Выделяют следующие способы производства этого материала:

Феррит что это за материал

Для производства качественного феррита необходимо соблюдать основные условия изготовления и использовать высокоактивные ферритовые соединения или порошки.

Химический состав

Ферриты являются смесью оксидов железа и иных легирующих металлов, включающих в себя медь, цинк, магний, ниобий, кобальт, никель, литий и марганец. Средняя молярная масса вещества зависит от процентного содержания химических элементов в растворе. Она равняется 152 – 160 г/моль. В зависимости от химического состава и структуры выделяют следующие разновидности феррита:

Химический состав феррита определяется эксплуатационными характеристиками материала и сферой его применения.

Классификация ферритов

Ферриты подразделяются на 3 основных класса:

В зависимости от основных параметров металла были созданы марки ферритов:

В соответствии с марками металлов была создана классификация ферритов, демонстрирующая виды применения данной модификации железа:

Отдельные марки ферритов могут применяться для производства определенной аппаратуры. В ионных аккумуляторах может использоваться только феррит цинка, являющийся магнитомягким металлом. Для магнитных головок изготавливают железные сплавы на основе никель-цинковых материалов. При сборке датчиков и специальных детекторов используют ферриты с высокой термочувствительностью. Ферриты, способные работать при импульсном намагничивании, используются во время производства трансформаторов. Модификации железа, имеющие низкие потери при частоте, могут применяться в телевизионных приборах.

Источник

Что такое феррит? Свойства, применение, производство и цена феррита

Здесь поможет уже слово «окси», указывающее на кислород. То есть, речь идет об оксидах железа. Однако, на этом формула ферритов не заканчивается. Нюансы рассмотрим в первой главе.

Что такое феррит

Любой феррит содержит в своей структуре еще и оксид другого металла. Металл этот должен быть ферромагнитиком, то есть, обладать магнитными свойствами в отсутствие магнитного поля.

Феррит что это за материал

Для его волн вещества группы легко проницаемы. Железо, кстати, ферромагнитик. В оксиферах элемент выбирает себе подобную пару, к примеру, никель в соединении с тем же кислородом.

Однако, доступны в силу стоимости или распространенности лишь несколько. Но, вернемся от частного к общему. Есть ли ферромагнитные свойства у феррита, и каковы, вообще, его свойства?

Свойства феррита

Итак, структура феррита всегда сводится к формуле MeOFe2O3. Соединения не металлические, но являются магнитомягкими. Это значит, что материалы способны намагнититься до насыщения и даже перемагнититься в слабом поле.

А вот излишней проводимости у них не наблюдается. Магнитный феррит — это не металл и уступает ему в способности передавать ток, однако, полностью ее не лишен. Большинство веществ группы — полупроводники.

Феррит что это за материал

Занимая промежуточное положение между металлами и диэлектриками, ферриты начинают лучше проводить ток при нагреве. При падении температуры оксиферы могут перейти в диэлектрики.

Зато, работая в режиме полупроводников, ферриты обеспечивают меньшие потери энергии, поскольку в веществах группы почти не образуются вихревые токи. Они замкнуты. Энергия не доходит из точки А в точку Б. Поэтому, вихревые токи именуют паразитарными и потребитель недополучает энергию, хоть и платит за нее.

Теперь, к вопросу ферромагнитности. Ее сохраняют лишь некоторые вещества группы. Так, феррит перлит ферромагнитен, а оксифер никеля — нет. Однако, есть и сложные ферриты. Они являются совмещением двух простых — одного ферромагнитного и одного простого.

Магнитные свойства комплексных оксиферов наиболее выражены, чем и пользуются промышленники. Где именно пригождаются свойства ферритов, и каких именно, расскажем в следующей главе.

Применение феррита

Феррит что это за материал

Материал выступает в роли экрана, отражая внешнее магнитное поле и задерживая то, что исходит от кабелей. Это обеспечивает стабильную работу техники, исключая искажение сигнала.

Если дома есть звуковая аппаратура, к примеру, магнитофоны, можно взглянуть и на них. Увидим головки записи. Они из феррита. Используют монокристаллы. Они, как и цилиндры на компьютерных кабелях исключают влияние помех на сигнал. Именно поэтому звук получается чистым.

Феррит что это за материал

Скорость этого движения высока, а посему, головка записи должна быть износостойкой. Вот почему производители закупают именно монокристаллы ферритов. Они тверже иных модификаций.

Если заглянуть в технические помещения, там наверняка найдется трансформатор на феррите. Кольца из сплава окиси железа с окисями других металлов служат в нем сердечником.

Деталь в несколько тысяч раз повышает индукцию магнитного поля. Речь о его действии на заряженные частицы. В итоге, прибор передает большую мощность, чем мог бы делать это с сердечником не из феррита.

Кольцевые сердечники из феррита встречаются не только в трансформаторах, но и прочей электронике. Детали бывают литыми и составными. Последние кольца – соединение двух половинок.

Феррит что это за материал

На них проще наматывать проволоку. В случае с монолитными сердечниками, сие проблематично. Поэтому, комбинированные модели распространеннее. Зазор между половинками стараются сделать как можно меньше. Иначе, теряется эффективность детали.

Они присущи и магнитам. Совпадает направление намагниченности подрешеток в структуре материалов. В обоих случаях, это 180 градусов. Но, у ферритов угол способен меняться.

Феррит что это за материал

Необходимое условие — активное усиление внешних полей. Намагниченность подрешеток становится меньше и … феррит переходит уже в категорию антиферромагнитиков.

Так что, при путанице в понятиях, а их путают многие, помните, что герой статьи – этакая переходная стадия между 100-процентными магнитами и полноценными антиферромагнитиками.

Производство феррита

Так именуют исходную смесь из окислов металлов. Затем, растворяют ненужные примеси. Это термический процесс, соответственно, шихту нагревают. После, соли осаждают и продолжают работу с полезным составом.

Феррит что это за материал

Цена феррита

Всего пару сотен обойдется ферритовый цилиндр для компьютерного кабеля. У детали есть защелка. Поэтому, надеть цилиндр на провод самостоятельно не составит труда. Некоторые модели стоят всего 110 рублей.

За миниатюрные заготовки для электроники, порой, просят всего пару рублей. Столько, к примеру, дают за 3-сантиметровые прутки. Их, в основном, отпускают оптом. Минимальная отгрузка – 300 штук. Однако, найти деталь можно и в рознице. Но там пруток стоит уже 6-15 рублей.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *