21 день голода результаты

Оздоровительное голодание на 21 день

Во время отсутствия приема пищи могут пропадать опухоли и «ненужные» организму клетки, но не стоит злоупотреблять и целиком полагаться только на голодовку, так как полноценной научным обоснованием теория не обладает. Поэтому, не рекомендуется самостоятельно использовать голодание 21 день в качестве лечения. Сегодня речь пойдет о 21-дневном голодании на воде, вследствие которой, как думает большинство, организм лишается какой-либо поступающей извне энергии, из-за чего происходит питание посредством жировых запасов.

Задумываясь над этим сложилось мнение, что голодовка самый простой путь к похудению, но это не так. Человеческая физиология издавна настроена на экстремальные условия и на выживание в них. В течение длительного времени, человек мог обойтись без еды, не теряя «лишний» жир, являющийся своеобразной защитой.

21 день голода результатыНо самостоятельно голодание не принесет ожидаемого эффекта здорового похудения, которого так ожидают многие представительницы прекрасного пола, так как цели оздоровления и похудения абсолютно разные. Потерять лишний вес можно только путем физических упражнений и сбалансированного питания, голодовка же поможет настроить и выровнять баланс всех процессов организма.

Всеми известный факт, что женская половина человечества недовольна собственной фигурой в большей степени, чем мужская, следствием чего можно объяснить еженедельное появление новейших раскрученных диет и разгрузочных дней. Печаль и неприятность данной ситуации в том, что такие «запатентованные» диеты, в основном, не одобрены врачами и диетологами.

Простая и безобидная диета, способна нанести непоправимые последствия для организма, приводящие к длительному лечению. Что нельзя сказать о голодании на воде, одобренном врачами, приводящем в порядок обмен веществ, избавляющем от висцерального жира, улучшая общее состояние здоровья. Отказ от приема пищи длящийся 21 день – невероятная польза для организма и тела.

Принцип длительного голода

Лечебное трехнедельное голодание – рискованный метод для каждого организма, в связи с тем, что длительный срок пребывания без еды не исключает необратимые последствия при неправильном выполнении условий. На третьи сутки голодовки из-за нехватки, поступающей энергии извне в виде еды, организм начинает использовать «отложенные запасы еды».

Представленный способ воздержания от приема пищи, способствует освобождению от давних хронических заболеваний, очищению от накопившихся и отравляющих тело токсинов, возвращению новых сил и молодости, но со строгим соблюдением и выполнением условий голодовки, дабы избежать необратимых последствий. Водное голодание на 21 день практикуется два раза в год.

Подготовка к голоданию

Несмотря на всеобщую доступность голодного «эксперимента» и его эффективности, правила подготовки должны быть строго соблюдены. Основным и обязательным условием является осмотр врачом перед началом голодовки. Человеку, проживающему одному полегче осилить голодовку, но для семейных людей необходимо договориться с домашними об отдельном рационе приема пищи и поддержке с их стороны.

Бессмысленно поддаваться срыву и отказываться от приема пищи, потому что организму необходимо подготовиться. За пару суток до старта откажитесь от жирной и жареной, сладкой и печеной еды, выпечки и газировки, от кофе, а тем более от алкоголя и курения. Ежедневно выпивайте два литра воды. Голодание 21 день на воде берет свое начало с некоторых шагов, обозначающих своеобразный вход:

Ежедневное описание симптомов голодания

Примерное ежедневное описание симптомов, которое поможет ознакомиться и настроиться на голодание:

День первый. Состояние стабильно, сильных изменений наблюдаться не будет. Необходимо пить большое количество воды, оптимально пить каждый час по 250 мл. Будет ощущаться голод, но постепенно организм привыкнет к этому чувству.

День второй. Утренний стакан воды, затем прогулка на свежем воздухе – лучшее решение. Общее состояние не должно вызывать опасения, организм все еще бодр. У некоторых появляется жажда, поэтому помогает обильное питье, но не более 2,5 литров в сутки.

День третий и четвертый. Появится небольшая слабость в теле и неприятный привкус в ротовой полости, тошнота. Но вода – ключ к спасению.

День пятый. Присутствует небольшая слабость, проходит тошнота и, если у кого-то появлялись, головные боли.

День шестой. К вечеру возникнет слабость и на языке появится белый налет, который необходимо убирать. Перестает хотеться принимать пищу.

День седьмой. Возникает ощущения бодрости и душевного подъема, но к вечеру наблюдается слабость и даже жар. Следует обильно пить большое количество воды.

День восьмой. Утро наблюдается прилив бодрости, пейте воду и сходите на прогулку. К вечеру силы обычно покидают, поэтому полезно находиться в спокойствии и раньше ложиться спать.

День девятый и десятый. Ощущение голода пропадает совсем, а тело приобретает невероятную легкость. Часто обостряется слух и обоняние.

День одиннадцатый и двенадцатый. Похож на предыдущие, но общее состояние волнообразное.

День тринадцатый и четырнадцатый. Самочувствие отличное и ощущается прилив энергии. Не забывайте ухаживать за телом и ртом.

День пятнадцатый и шестнадцатый. Происходит очищение поверхности кожи, на утро появится резки запах изо рта и на языке все еще есть налет, но уже меньше, его обязательно необходимо убирать.

День семнадцатый. Изо рта уже не пахнет. Практически исчезает белесый налет на языке, но к вечеру часто случается жар, ощущается слабость.

День девятнадцатый и двадцатый. Настроение улучшается, но все еще присутствует слабость, снова появится тошнота. Чувство голода нет и организм очищен.

День двадцать первый. Последний день голодовки. На следующий день, то есть двадцать второй, начинается выход.

21 день голода результаты

Польза

То, что голодание имеет большое количество приверженцев является практическим подтверждением эффективности данного метода. При обычном ритме жизни и режиме питания, организм не способен самостоятельно себя очищать от вредных веществ, которые поступают с пищей. Пауза в питании дает организму время переключиться на самоочищение и восстановление нормального функционирования внутренних систем.

В период, пока не поступает, пища все поврежденные и больные клетки отмирают и начинается процесс восстановления и укрепления здоровых. Голод на воде эффективно справляется с лечением и избавлением от хронических заболеваний. Голодовка контролирует и нормализует работу желудочно-кишечного тракта, восстанавливая иммунитет и ментальное здоровье (психику).

В течение трех недель внутренние ресурсы организма активируются, но некоторые люди менее выносливы и упадок сил у них проявляется с самого начала из-за большого лишнего веса и зашлакованности организма. Такие люди нуждаются в длительном голодании, чем 21 день, порядком это от 30 до 40 суток, а максимальный период голодовки отмечен 90 днями.

Двадцать один день без еды – длительный и трудоемкий этап, который способен выдержать не каждый. Неправильная подготовка и выход из голодовки, не только не помогут, но и навредят здоровью. Долгое воздержание от приема пищи следует держать под контролем лечащего врача. Голодание запрещено:

Выход из 21 дневного голодания

Правильный и наиболее лояльный выход из 21 дневного голодания длится столько же дней, сколько проходила терапия очищения. Важны постепенность и натуральность продуктов. Примерное меню выхода:

От ваших усилий будет зависеть то, насколько долго продержится полученный результат и только вам решать, как дальше продолжать питаться и заниматься собой.

21 день голода результаты

Рекомендации

Перед началом голодовки, необходимо обязательно обследоваться у лечащего врача. Он проведет ряд анализов и только после полученного заключения, примет решение на разрешения или запрет задуманного вами плана оздоровления. Оправданные надежды, благополучная сдача анализов и получение положительного заключения – прекрасные новости, но условия выполнения голодовки остаются в силе и их нужно строго соблюдать 10 рекомендаций до самого завершения:

Для общего развития можно прочесть специализированную литературу таких известных авторов, как Столешников и Брегг.

Источник

Алгоритм метаболизма

21 день голода результаты

21 день голода результатыавтор: А. Ю. Барановский, д. м. н., профессор, заведующий кафедрой гастроэнтерологии и диетологии Северо-Западного государственного медицинского университета им. И. И. Мечникова, врач высшей категории

Решение организационных вопросов питания у лиц старших возрастов, разработка и назначение индивидуализированных рационов рационального, профилактического и лечебного питания в существенной степени зависит от правильной оценки врачом нутриционного статуса пожилого человека, особенностей состояния обменных процессов. Именно поэтому профессионально грамотный клиницист, участвующий в решении проблем лечебно-профилактического питания у лиц пожилого и старческого возраста, должен быть достаточно хорошо ориентирован в области основ клинической биохимии и физиологии питания стареющего организма.

Белковый обмен

Белки — сложные азотсодержащие биополимеры, мономерами которых служат аминокислоты (органические соединения, содержащие карбоксильные и аминные группы). Их биологическая роль многообразна. Белки выполняют в организме пластические, каталитические, гормональные, транспортные и другие функции, а также обеспечивают специфичность. Значение белкового компонента питания заключается прежде всего в том, что он служит источником аминокислот.

Аминокислоты делятся на эссенциальные и неэссенциальные в зависимости от того, возможно ли их образование в организме из предшественников. К незаменимым аминокислотам относятся гистидин, лейцин, изолейцин, лизин, метионин, фенилаланин, триптофан и валин, а также цистеин и тирозин, синтезируемые соответственно из метионина и фенилаланина. Девять заменимых аминокислот (аланин, аргинин, аспарагиновая и глутамовая кислоты, глутамин, глицин, пролин и серин) могут отсутствовать в рационе, так как способны образовываться из других веществ. В организме также существуют аминокислоты, которые продуцируются путем модификации боковых цепей вышеперечисленных (например, компонент коллагена — гидроксипролин — и сократительных белков мышц — 3-метилгистидин).

Большинство аминокислот имеют изомеры (D- и L-формы), из которых только L-формы входят в состав белков человеческого организма. D-формы могут участвовать в метаболизме, превращаясь в L-формы, однако утилизируются гораздо менее эффективно.

Взаимоотношение аминокислот

По химическому строению аминокислоты делятся на двухосновные, двухкислотные и нейтральные с алифатическими и ароматическими боковыми цепями, что имеет большое значение для их транспорта, поскольку каждый класс аминокислот обладает специфическими переносчиками. Аминокислоты с аналогичным строением обычно вступают в сложные, часто конкурентные взаимоотношения.

Так, ароматические аминокислоты (фенилаланин, тирозин и триптофан) близкородственны между собой. Хотя фенилаланин является незаменимой, а тирозин — синтезируемой из него заменимой аминокислотой, наличие тирозина в рационе как будто бы «сберегает» фенилаланин. Если фенилаланина недостаточно или его метаболизм нарушен (например, при дефиците витамина С) — тирозин становится незаменимой аминокислотой. Подобные взаимоотношения характерны и для серосодержащих аминокислот: незаменимой — метионина — и образующегося из него цистеина.

Триптофан в ходе превращений, для которых необходим витамин В 6 (пиридоксин), включается в структуру НАД и НАДФ, то есть дублирует роль ниацина. Приблизительно половина обычной потребности в ниацине удовлетворяется за счет триптофана: 1 мг ниацина пищи эквивалентен 60 мг триптофана. Поэтому состояние пеллагры может развиваться не только при недостатке витамина РР в рационе, но и при нехватке триптофана или нарушении его обмена, в том числе вследствие дефицита пиридоксина.

Аминокислоты также делятся на глюкогенные и кетогенные, в зависимости от того, могут ли они при определенных условиях становиться предшественниками глюкозы или кетоновых тел (см. табл. 1).

Таблица 1. Классификация аминокислот

ВидыЭссенциальные аминокислотыНеэссенциальные аминокислоты
АлифатическиеВалин (Г), лейцин (К), изолейцин (Г, К)Глицин (Г), аланин (Г)
ДвухосновныеЛизин (К), гистидин (Г, К)*Аргинин (Г)*
АроматическиеФенилаланин (Г, К), триптофан (Г, К)Тирозин (Г, К)**
ОксиаминокислотыТреонин (Г, К)Серин (Г)
СеросодержащиеМетионин (Г, К)Цистеин (Г)**
Дикарбоновые и их амидыГлутамовая кислота (Г), глутамин (Г), аспарагиновая кислота (Г), аспарагин (Г)
ИминокислотыПролин (Г)

Обозначения: Г — глюкогенные, К — кетогенные аминокислоты; * — гистидин незаменим у детей до года; ** — условно-незаменимые аминокислоты (могут синтезироваться из фенилаланина и метионина).

Необходимые азотсодержащие соединения

Поступление азотсодержащих веществ с пищей происходит в основном за счет белка и в менее значимых количествах — свободных аминокислот и других соединений. В животной пище основное количество азота содержится в виде белка. В продуктах растительного происхождения большая часть азота представлена небелковыми соединениями, также в них содержится множество аминокислот, которые не встречаются в организме человека и зачастую не могут метаболизироваться им.

Синтез пуриновых оснований

Человек не нуждается в поступлении с пищей нуклеиновых кислот. Пуриновые и пиримидиновые основания синтезируются в печени из аминокислот, а избыток этих оснований, поступивших с пищей, выводится в виде мочевой кислоты.

Прием белка

Обычный (но не оптимальный) ежедневный прием белка у среднестатистического человека составляет приблизительно 100 г. К ним присоединяется примерно 70 г белка, секретируемого в полость желудочно-кишечного тракта. Из этого количества абсорбируется около 160 г. Самим организмом в сутки синтезируется в среднем 240–250 г белка. Такая разница между поступлением и эндогенным преобразованием свидетельствует об активности процессов обратного восстановления исходного сложного химического соединения из «осколков», образовавшихся при его метаболизме (ресинтеза белков из аминокислот, а аминокислот из аммиака и «углеродных скелетов» аминокислот).

Азотное равновесие

Для здорового человека характерно состояние азотного равновесия, когда потери белка (с мочой, калом, эпидермисом и т. п.) соответствуют его количеству, поступившему с пищей. При преобладании катаболических процессов возникает отрицательный азотный баланс, который характерен для низкого потребления азотсодержащих веществ (низкобелковых рационов, голодания, нарушения абсорбции белка) и многих патологических процессов, вызывающих интенсификацию распада (опухолей, ожоговой болезни и т. п.). При доминировании синтетических процессов количество вводимого азота преобладает над его выведением, и возникает положительный азотный баланс, характерный для детей, беременных женщин и реконвалесцентов после тяжелых заболеваний.

После прохождения энтерального барьера белки поступают в кровь в виде свободных аминокислот. Следует отметить, что клетки слизистой оболочки желудочно-кишечного тракта могут метаболизировать некоторые аминокислоты (в том числе глутамовую кислоту и аспарагиновую кислоту в аланин). Способность энтероцитов видоизменять эти аминокислоты, возможно, позволяет избежать токсического эффекта при их избыточном введении.

Аминокислоты, как поступившие в кровь при переваривании белка, так и синтезированные в клетках, в крови образуют постоянно обновляющийся свободный пул аминокислот, который составляет около 100 г.

Путь белка

75 % аминокислот, находящихся в системной циркуляции, представлены аминокислотами с ветвящимися цепями (лейцином, изолейцином и валином). Из мышечной ткани в кровоток выделяются аланин, который является основным предшественником синтеза глюкозы, и глутамин. Многие свободные аминокислоты подвергаются трансформации в печени. Часть свободного пула инкорпорируется в белки организма и при их катаболизме вновь поступает в кровоток. Другие непосредственно подвергаются катаболическим реакциям. Некоторые свободные аминокислоты используются для синтеза новых азотсодержащих соединений (пурина, креатинина, адреналина) и в дальнейшем деградируют, не возвращаясь в свободный пул, в специфичные продукты распада.

Роль печени

Постоянство содержания различных аминокислот в крови обеспечивает печень. Она утилизирует примерно ⅓ всех аминокислот, поступающих в организм, что позволяет предотвратить скачки в их концентрации в зависимости от питания.

Первостепенная роль печени в азотном и других видах обмена обеспечивается ее анатомическим расположением — продукты переваривания попадают по воротной вене непосредственно в этот орган. Кроме того, печень непосредственно связана с экскреторной системой — билиарным трактом, что позволяет выводить некоторые соединения в составе желчи. Гепатоциты — единственные клетки, обладающие полным набором ферментов, участвующих в аминокислотном обмене. Здесь выполняются все основные процессы азотного метаболизма: распад аминокислот для выработки энергии и обеспечения глюконеогенеза, образование заменимых аминокислот и нуклеиновых кислот, обезвреживание аммиака и других конечных продуктов. Печень является основным местом деградации большинства незаменимых аминокислот (за исключением аминокислот с ветвящимися цепями).

Инсулиновый ответ

Синтез азотсодержащих соединений (белка и нуклеиновых кислот) в печени весьма чувствителен к поступлению их предшественников из пищи. После каждого приема пищи наступает период повышенного внутрипеченочного синтеза белков, в том числе альбумина. Аналогичное усиление синтетических процессов происходит и в мышцах. Эти реакции связаны прежде всего с действием инсулина, который секретируется в ответ на введение аминокислот и/или глюкозы.

Некоторые аминокислоты (аргинин и аминокислоты с ветвящимися цепями) усиливают продукцию инсулина в большей степени, чем остальные. Другие (аспарагин, глицин, серин, цистеин) стимулируют секрецию глюкагона, который усиливает утилизацию аминокислот печенью и воздействует на ферменты глюконеогенеза и аминокислотного катаболизма. Благодаря этим механизмам происходит снижение уровня аминокислот в крови после поступления их с пищей. Действие инсулина наиболее выражено для аминокислот, содержащихся в кровотоке в свободном виде (аминокислот с ветвящимися цепями), и малозначимо для тех, которые транспортируются в связанном виде (триптофана). Обратное инсулину влияние на белковый метаболизм оказывают глюкокортикостероиды.

Аминокислоты на «экспорт»

Печень обладает повышенной скоростью синтеза и распада белков по сравнению с другими тканями организма (кроме поджелудочной железы). Это позволяет ей синтезировать «на экспорт», а также быстро обеспечивать лабильный резерв аминокислот в период недостаточного питания за счет распада собственных белков.

Особенность внутрипеченочного белкового синтеза заключается в том, что он усиливается под действием гормонов, которые в других тканях производят катаболический эффект. Так, при голодании белки мышц, для обеспечения организма энергией, подвергаются распаду, а в печени одновременно усиливается синтез белков, являющихся ферментами глюконеогенеза и мочевинообразования.

Избыток белка и голодание

Прием пищи, содержащей избыток белка, приводит к интенсификации синтеза в печени и в мышцах, образованию избыточных количеств альбумина и деградации излишка аминокислот до предшественников глюкозы и липидов. Глюкоза и триглицериды утилизируются как горючее или депонируются, а альбумин становится временным хранилищем аминокислот и средством их транспортировки в периферические ткани.

При голодании уровень альбумина прогрессивно снижается, а при последующей нормализации поступления белка медленно восстанавливается. Поэтому хотя альбумин и является показателем белковой недостаточности, он низкочувствителен и не реагирует оперативно на изменения в питании.

7 из 10 эссенциальных аминокислот деградируют в печени — либо образуя мочевину, либо впоследствии используясь в глюконеогенезе. Мочевина преимущественно выделяется с мочой, но часть ее поступает в просвет кишечника, где подвергается уреазному воздействию микрофлоры. Аминокислоты с ветвящимися цепями катаболизируются в основном в почках, мышцах и головном мозге.

Роль мышц

Мышцы синтезируют ежедневно 75 г белка. У среднего человека они содержат 40 % от всего белка организма. Хотя белковый метаболизм происходит здесь несколько медленнее, чем в других тканях, мышечный белок представляет собой самый большой эндогенный аминокислотный резерв, который при голодании может использоваться для глюконеогенеза.

Мышцы являются основной мишенью воздействия инсулина: здесь под его влиянием усиливается поступление аминокислот, увеличивается синтез мышечного белка и снижается распад.

В процессе превращений в мышцах образуются аланин и глутамин, их условно можно считать транспортными формами азота. Аланин непосредственно из мышц попадает в печень, а глутамин вначале поступает в кишечник, где частично превращается в аланин. Поскольку в печени из аланина происходит синтез глюкозы, частично обеспечивающий мышцу энергией, получающийся круго- оборот получил название глюкозо- аланинового цикла.

К азотсодержащим веществам мышц также относятся высокоэнергетичный креатин-фосфат и продукт его деградации креатинин. Экскреция креатинина обычно рассматривается как мера мышечной массы. Однако это соединение может поступать в организм с высокобелковой пищей и влиять на результаты исследования содержания его в моче. Продукт распада миофибриллярных белков — 3-метилгистидин — экскретируется с мочой в течение короткого времени и является достаточно точным показателем скорости распада в мышцах — при мышечном истощении скорость его выхода пропорционально снижается.

Механизм голодания

В отсутствие пищи синтез альбумина и мышечного белка замедляется, но продолжается деградация аминокислот. Поэтому на начальном этапе голодания мышцы теряют аминокислоты, которые идут на энергетические нужды. В дальнейшем организм адаптируется к отсутствию новых поступлений аминокислот (снижается потребность в зависящем от белка глюконеогенезе за счет использования энергетического потенциала кетоновых тел) и потеря белка мускулатуры уменьшается.

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!

Роль почек

Почки не только выводят конечные продукты азотного распада (мочевину, креатинин и др.), но и являются дополнительным местом ресинтеза глюкозы из аминокислот, а также регулируют образование аммиака, компенсируя избыток ионов водорода в крови.

Глюконеогенез и функционирование кислотно-щелочной регуляции тесно скоординированы, поскольку субстраты этих процессов появляются при дезаминировании аминокислот: углерод для синтеза глюкозы и азот — для аммиака. Существует даже мнение, что именно производство глюкозы является основной реакцией почек на ацидоз, а образование аммиака происходит вторично.

Белок в нервной ткани

Для нервной ткани характерны более высокие концентрации аминокислот, чем в плазме. Это позволяет обеспечить мозг достаточным количеством ароматических аминокислот, являющихся предшественниками нейромедиаторов.

Некоторые заменимые аминокислоты, такие как глутамат (из которого при участии пиридоксина образуется гамма-аминомасляная кислота) и аспартат, также обладают влиянием на возбудимость нервной ткани. Их концентрация здесь высока, при этом заменимые аминокислоты способны синтезироваться и на месте.

Сон после еды

Специфическую роль играет триптофан, являющийся предшественником серотонина. Именно с повышением концентрации триптофана (а следовательно, и серотонина) связана сонливость после еды. Такой эффект особенно выражен при приеме больших количеств триптофана совместно с углеводистой пищей. Повышенная секреция инсулина снижает уровень в крови аминокислот с ветвящимися цепями, которые при преодолении барьера «кровь — мозг» обладают конкурентными взаимоотношениями с ароматическими аминокислотами, но в то же время не оказывает влияния на концентрацию связанного с альбумином триптофана. Благодаря подобным эффектам препараты триптофана могут использоваться в психиатрической практике.

При заболеваниях печени

Ограничение ароматических аминокислот в рационе, в связи с их влиянием на центральную нервную систему, имеет профилактическое значение при ведении пациентов с печеночной энцефалопатией. Элементные аминокислотные диеты с преимущественным содержанием лейцина, изолейцина, валина и аргинина помогают избежать развития белковой недостаточности у гепатологических больных и в то же время не приводят к возникновению печеночной комы.

Основные пластические функции протеиногенных аминокислот перечислены в таблице 2.

Таблица 2. Основные функции аминокислот

АланинПредшественник глюконеогенеза, переносчик азота из периферических тканей в печень
АргининНепосредственный предшественник мочевины
Аспарагиновая кислотаПредшественник глюконеогенеза, предшественник пиримидина, используется для синтеза мочевины
Глутаминовая кислотаДонор аминогрупп для многих реакций, переносчик азота (проникает через мембраны легче, чем глутамин), источник аммиака, предшественник ГАМК
ГлицинПредшественник пуринов, глютатиона и креатинина, входит в состав гемоглобина и цитохромов, нейротрансмиттер
ГистидинПредшественник гистамина, донор углерода
ЛизинПредшественник карнитина (транспорт жирных кислот), составляющая коллагена
МетионинДонор метальных групп для многих синтетических процессов (в т. ч. холина, пиримидинов), предшественник цистеина, участвует в метаболизме никотиновой кислоты и гистамина
ФенилаланинПредшественник тирозина
СеринСоставляющая фосфолипидов, предшественник сфинголипидов, предшественник этаноламина и холина, участвует в синтезе пуринов и пиримидинов
ТриптофанПредшественник серотонина и никотинамида
ТирозинПредшественник катехоламинов, допамина, меланина, тироксина
ЦистеинПредшественник таурина (желчные кислоты), входит в состав глютатиона (антиоксидантная система)

Нормы потребления белка

Современные рекомендации по обеспечению пожилых людей и стариков основными питательными веществами, в первую очередь белками, свидетельствуют о целесообразном некотором снижении суточного количества белковых продуктов в пищевом рационе до 0,75–0,8 г/кг веса. Это связано с тем, что интенсивность основных физиологических функций с каждым десятилетием жизни человека после 50 лет снижается почти на 10 % (Rogers J., Jensen G., 2004), потребность белка уменьшается за счет инволюции синтетических и пластических процессов и ферментообразования, продукции гормонов, ряда биологически активных веществ, обеспечения мышечной деятельности и т. д.

Рекомендуемые нормы потребления для белка с учетом приведенных выше показателей составляют 55–62 г/сут (для мужчины весом 77 кг в возрасте 60–70 лет) и 45–52 г/сут (для женщины весом 65 кг в возрасте 60–70 лет) по выводам IV Американского национального исследования по оценке здоровья и питания (2006).

Вместе с тем установлено, что при сохранении физической активности пожилых людей (профессиональной физической нагрузки, занятий физкультурой, работы на дачном участке и т. п.) для поддержания азотного равновесия организма требуется повышение белкового обеспечения пожилого человека в количестве 1–1,25 г/кг в день. Эта же квота пищевого белка полностью обеспечит потребности пожилого человека, находящегося в состоянии стресса, болезни или ранения (Lowenthal D. T., 1990).

Рис. 1. Влияние пищевых веществ на развитие болезней избыточного питания (по А. А. Покровскому)

21 день голода результаты

Дефицит белка = старение

Важно отметить, что организм пожилого человека очень чувствителен как к дефициту экзогенно поступающих белков, так и к их избытку. В условиях белкового дефицита прогрессирующе развиваются процессы дистрофии и атрофии клеточных структур, в первую очередь мышечной ткани, слизистых оболочек (желудочно-кишечного тракта, дыхательной системы и др.), паренхиматозных органов (поджелудочной железы, печени, эндокринных желез и др.), структур иммунной системы. Белковый дефицит питания активизирует процессы старения организма.

Механизмы патологического действия на организм пожилого и старого человека пищевой белковой перегрузки связаны в первую очередь с белковой «агрессией» печени и связанной с этим несостоятельностью ферментных систем, неполной деполимеризацией всех фракций белка, накоплением в крови токсических продуктов незавершенных окислительно-восстановительных реакций и т. д.

Белковая перегрузка

Интоксикационный процесс метаболического генеза при избыточном белковом питании пожилых и старых людей многократно усиливается по причине развития процессов гнилостной кишечной диспепсии в условиях относительной ферментной недостаточности желудка, поджелудочной железы, тонкой кишки и развития синдромов мальдигестии и мальабсорбции, а также кишечного дисбиоза (Барановский А. Ю., Кондрашина Э. А., 2008).

Белковая пищевая перегрузка в рамках интоксикационного синдрома способствует перевозбуждению центральной нервной системы, иногда — состояниям, близким к неврозам. При этом наблюдается повышенный расход витаминов в организме с формированием витаминной недостаточности.

При длительном высокобелковом питании вначале наблюдается компенсаторное усиление, а затем угнетение секреторной функции желудка и поджелудочной железы, повышается риск развития таких заболеваний, как подагра, мочекаменная болезнь.

В следующем выпуске журнала «Практическая диетология» мы продолжим рассказ о геронтологических особенностях основных видов обмена веществ пациентов пожилого и старческого возраста — углеводном и жировом обмене.

// ПД

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *